SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Drossart P) "

Sökning: WFRF:(Drossart P)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
3.
  • Barucci, M. A., et al. (författare)
  • Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
  •  
4.
  •  
5.
  • Svennberg, E, et al. (författare)
  • How to use digital devices to detect and manage arrhythmias: an EHRA practical guide
  • 2022
  • Ingår i: Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. - : Oxford University Press (OUP). - 1532-2092. ; 24:6, s. 979-1005
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Orton, G, et al. (författare)
  • Earth-based observations of the Galileo probe entry site
  • 1996
  • Ingår i: SCIENCE. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075. ; 272:5263, s. 839-840
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth-based observations of Jupiter indicate that the Galileo probe probably entered Jupiter's atmosphere just inside a region that has less cloud cover and drier conditions than more than 99 percent of the rest of the planet. The visual appearance of the
  •  
7.
  • Aktaa, Suleman, et al. (författare)
  • European Society of Cardiology Quality Indicators for the care and outcomes of cardiac pacing : developed by the Working Group for Cardiac Pacing Quality Indicators in collaboration with the European Heart Rhythm Association of the European Society of Cardiology
  • 2022
  • Ingår i: Europace. - : Oxford University Press (OUP). - 1099-5129 .- 1532-2092. ; 24:1, s. 165-172
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: To develop a suite of quality indicators (QIs) for the evaluation of the care and outcomes for adults undergoing cardiac pacing.METHODS AND RESULTS: Under the auspice of the Clinical Practice Guideline Quality Indicator Committee of the European Society of Cardiology (ESC), the Working Group for cardiac pacing QIs was formed. The Group comprised Task Force members of the 2021 ESC Clinical Practice Guidelines on Cardiac Pacing and Cardiac Resynchronization Therapy, members of the European Heart Rhythm Association, international cardiac device experts, and patient representatives. We followed the ESC methodology for QI development, which involved (i) the identification of the key domains of care by constructing a conceptual framework of the management of patients receiving cardiac pacing, (ii) the development of candidate QIs by conducting a systematic review of the literature, (iii) the selection of the final set of QIs using a modified-Delphi method, and (iv) the evaluation of the feasibility of the developed QIs. Four domains of care were identified: (i) structural framework, (ii) patient assessment, (iii) pacing strategy, and (iv) clinical outcomes. In total, seven main and four secondary QIs were selected across these domains and were embedded within the 2021 ESC Guidelines on Cardiac Pacing and Cardiac Resynchronization therapy.CONCLUSION: By way of a standardized process, 11 QIs for cardiac pacing were developed. These indicators may be used to quantify adherence to guideline-recommended clinical practice and have the potential to improve the care and outcomes of patients receiving cardiac pacemakers.
  •  
8.
  • Solomonidou, A., et al. (författare)
  • The chemical composition of impact craters on Titan : I. Implications for exogenic processing
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the spectral behavior of nine Titan impact craters in order to constrain their composition. Past studies that have examined the chemical composition of impact craters on Titan have either used qualitative comparisons between craters or combined all craters into a single unit, rather than separating them by geographic location and/or degradation state. Here, we use Visual and Infrared Mapping Spectrometer (VIMS) data and a radiative transfer code to estimate the atmospheric contribution to the data, extract the surface albedos of the impact craters, and constrain their composition by using a library of candidate Titan materials, including essentially water ice, tholin, a dark component, and other possible ices at different grain sizes. Following a general characterization of the impact craters, we study two impact crater subunits, the "crater floor" and the "ejecta blanket". The results show that the equatorial dune craters - Selk, Ksa, Guabonito, and the crater on Santorini Facula - appear to be purely composed of organic material (mainly an unknown dark component). Titan's midlatitude plain craters - Afekan, Soi, and Forseti - along with Menrva and Sinlap, are enriched in water ice within an organic-based mixture. This follows the geographic pattern observed in our previous work with VIMS data, where the uppermost layers of the midlatitude alluvial fans, undifferentiated plains, and labyrinth terrains were found to consist of a mixture of organics and water ice, while the equatorial plains, hummocky terrains, and dunes were found to consist of a mixture of dark material and tholins. Furthermore, we found that the addition of some form of ice improves the fit in the ejecta spectra of Afekan and Sinlap craters. We find no indication for the presence of either NH3 or CO2 ice. Our main results agree with an existing Titan surface evolution scenario, wherein the impact cratering process produces a mixture of organic material and water ice, which is later "cleaned" through fluvial erosion in the midlatitude plains. This cleaning process does not appear to operate in the equatorial regions, which are quickly covered by a thin layer of sand sediment (with the exception of the freshest crater on Titan, Sinlap). Thus, it appears that active processes are working to shape the surface of Titan, and it remains a dynamic world in the present day.
  •  
9.
  • Solomonidou, A., et al. (författare)
  • The Spectral Nature of Titan's Major Geomorphological Units : Constraints on Surface Composition
  • 2018
  • Ingår i: Journal of Geophysical Research - Planets. - : AMER GEOPHYSICAL UNION. - 2169-9097 .- 2169-9100. ; 123:2, s. 489-507
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate Titan's low-latitude and midlatitude surface using spectro-imaging near-infrared data from Cassini/Visual and Infrared Mapping Spectrometer. We use a radiative transfer code to first evaluate atmospheric contributions and then extract the haze and the surface albedo values of major geomorphological units identified in Cassini Synthetic Aperture Radar data, which exhibit quite similar spectral response to the Visual and Infrared Mapping Spectrometer data. We have identified three main categories of albedo values and spectral shapes, indicating significant differences in the composition among the various areas. We compare with linear mixtures of three components (water ice, tholin-like, and a dark material) at different grain sizes. Due to the limited spectral information available, we use a simplified model, with which we find that each albedo category of regions of interest can be approximately fitted with simulations composed essentially by one of the three surface candidates. Our fits of the data are overall successful, except in some cases at 0.94, 2.03, and 2.79m, indicative of the limitations of our simplistic compositional model and the need for additional components to reproduce Titan's complex surface. Our results show a latitudinal dependence of Titan's surface composition, with water ice being the major constituent at latitudes beyond 30 degrees N and 30 degrees S, while Titan's equatorial region appears to be dominated partly by a tholin-like or by a very dark unknown material. The albedo differences and similarities among the various geomorphological units give insights on the geological processes affecting Titan's surface and, by implication, its interior. We discuss our results in terms of origin and evolution theories. Plain Language Summary Titan, Saturn's moon, has been investigated by the Cassini mission for almost 13 years, unveiling an exotic world with many features similar to Earth. One of the mysteries that still has not been resolved even after that many years of exploration is the nature of its surface composition. Titan is a very complex world with multivariable geology and a very thick and hazy atmosphere that shields the surface from remote sensing observations, prohibiting direct evaluation of its composition. In our study we analyze spectro-imaging data from the Cassini visual and infrared spectrometer. We first infer the atmospheric contribution and then extract true surface properties. We study major geomorphological regions on Titan, which include among other mountains, plains, craters, and dunes. We derive their surface albedo values and shapes that reveal the brightness of the surface and compare them with materials that we expect to find on Titan's surface, such as water ice, tholins (atmospheric products), and a very dark unknown component. The results from this analysis show that Titan presents a pattern in its surface composition distribution with its equator being dominated by organic materials from the atmosphere and a very dark unknown material, while higher latitudes contain more water ice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy