SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Druart C.) "

Sökning: WFRF:(Druart C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Duparc, T., et al. (författare)
  • Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism
  • 2017
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 66:4, s. 620-632
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. Design To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing nonalcoholic steatohepatitis (NASH). Results Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-alpha, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. Conclusions Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans.
  •  
2.
  • Van Hul, M., et al. (författare)
  • Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier
  • 2018
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 314:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence suggests that polyphenols have a significant potential in the prevention and treatment of risk factors associated with metabolic syndrome. The objective of this study was to assess the metabolic outcomes of two polyphenol-containing extracts from cinnamon bark (CBE) and grape pomace (GPE) on C57BL/6J mice fed a high-fat diet (HFD) for 8 wk. Both CBE and GPK were able to decrease fat mass gain and adipose tissue inflammation in mice fed a HFD without reducing food intake. This was associated with reduced liver steatosis and lower plasma nonesterified fatty acid levels. We also observed a beneficial effect on glucose homeostasis, as evidenced by an improved glucose tolerance and a lower insulin resistance index. These ameliorations of the overall metabolic profile were associated with a significant impact on the microbial composition, which was more profound for the GPE than for the CBE. At the genus level. Peptococcus were decreased in the CBE group. In the GPE-treated group, several key genera that have been previously found to be linked with HFD, metabolic effects, and gut banter integrity were affected: we observed a decrease of Desulfovibrio, Lactococcus, whereas Allobaculum and Roseburia were increased. In addition, the expression of several antimicrobial peptides and tight junction proteins was increased in response to both CBK and GPH supplementation, indicating an improvement of the gut barrier function. Collectively, these data suggest that CBE and GPE can ameliorate the overall metabolic profile of mice on a high-fat diet, partly by acting on the gut microbiota.
  •  
3.
  • Wentzel, Christian, et al. (författare)
  • Genomic and clinical characteristics of six patients with partially overlapping interstitial deletions at 10p12p11
  • 2011
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 19:9, s. 959-964
  • Tidskriftsartikel (refereegranskat)abstract
    • With the clinical implementation of genomic microarrays, the detection of cryptic unbalanced rearrangements in patients with syndromic developmental delay has improved considerably. Here we report the molecular karyotyping and phenotypic description of six new unrelated patients with partially overlapping microdeletions at 10p12.31p11.21 ranging from 1.0 to 10.6 Mb. The smallest region of overlap is 306 kb, which includes WAC gene, known to be associated with microtubule function and to have a role in cell division. Another patient has previously been described with a 10Mb deletion, partially overlapping with our six patients. All seven patients have developmental delay and a majority of the patients have abnormal behaviour and dysmorphic features, including bulbous nasal tip, deep set eyes, synophrys/thick eyebrows and full cheeks, whereas other features varied. All patients also displayed various visual impairments and six out of seven patients had cardiac malformations. Taken together with the previously reported patient, our study suggests that the detected deletions may represent a new contiguous gene syndrome caused by dosage-sensitive genes that predispose to developmental delay.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy