SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duan Jianping) "

Sökning: WFRF:(Duan Jianping)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Wang, Sifan, et al. (författare)
  • Fire carbon emissions over Equatorial Asia reduced by shortened dry seasons
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire carbon emissions over Equatorial Asia (EQAS) play a critical role in the global carbon cycle. Most regional fire emissions (89.0%) occur in the dry season, but how changes in the dry-season length affect the fire emissions remains poorly understood. Here we show that, the length of the EQAS dry season has decreased significantly during 1979–2021, and the delayed dry season onset (5.4 ± 1.6 (± one standard error) days decade−1) due to increased precipitation (36.4 ± 9.1 mm decade−1) in the early dry season is the main reason. The dry season length is strongly correlated with the length of the fire season. Increased precipitation during the early dry season led to a significant reduction (May: −0.7 ± 0.4 Tg C decade−1; August: −12.9 ± 6.7 Tg C decade−1) in fire carbon emissions during the early and peak fire season. Climate models from the Coupled Model Intercomparison Project Phase 6 project a continued decline in future dry season length in EQAS under medium and high-emission scenarios, implying further reductions in fire carbon emissions.
  •  
3.
  • Chen, Jie, et al. (författare)
  • Reconciling East Asia's mid-Holocene temperature discrepancy through vegetation-climate feedback
  • Ingår i: Science Bulletin. - 2095-9273.
  • Tidskriftsartikel (refereegranskat)abstract
    • The term “Holocene temperature conundrum” refers to the inconsistencies between proxy-based reconstructions and transient model simulations, and it challenges our understanding of global temperature evolution during the Holocene. Climate reconstructions indicate a cooling trend following the Holocene Thermal Maximum, while model simulations indicate a consistent warming trend due to ice-sheet retreat and rising greenhouse gas concentrations. Various factors, such as seasonal biases and overlooked feedback processes, have been proposed as potential causes for this discrepancy. In this study, we examined the impact of vegetation-climate feedback on the temperature anomaly patterns in East Asia during the mid-Holocene (∼6 ka). By utilizing the fully coupled Earth system model EC-Earth and performing simulations with and without coupled dynamic vegetation, our objective was to isolate the influence of vegetation changes on regional temperature patterns. Our findings reveal that vegetation-climate feedback contributed to warming across most of East Asia, resulting in spatially diverse temperature changes during the mid-Holocene and significantly improved model-data agreement. These results highlight the crucial role of vegetation-climate feedback in addressing the Holocene temperature conundrum and emphasize its importance for simulating accurate climate scenarios.
  •  
4.
  • Zhang, Huan, et al. (författare)
  • East Asian warm season temperature variations over the past two millennia
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • East Asia has experienced strong warming since the 1960s accompanied by an increased frequency of heat waves and shrinking glaciers over the Tibetan Plateau and the Tien Shan. Here, we place the recent warmth in a long-term perspective by presenting a new spatially resolved warm-season (May-September) temperature reconstruction for the period 1-2000 CE using 59 multiproxy records from a wide range of East Asian regions. Our Bayesian Hierarchical Model (BHM) based reconstructions generally agree with earlier shorter regional temperature reconstructions but are more stable due to additional temperature sensitive proxies. We find a rather warm period during the first two centuries CE, followed by a multi-century long cooling period and again a warm interval covering the 900-1200 CE period (Medieval Climate Anomaly, MCA). The interval from 1450 to 1850 CE (Little Ice Age, LIA) was characterized by cooler conditions and the last 150 years are characterized by a continuous warming until recent times. Our results also suggest that the 1990s were likely the warmest decade in at least 1200 years. The comparison between an ensemble of climate model simulations and our summer reconstructions since 850 CE shows good agreement and an important role of internal variability and external forcing on multi-decadal time-scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy