SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duan Yumin) "

Sökning: WFRF:(Duan Yumin)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Hongyu, et al. (författare)
  • Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting
  • 2020
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 389
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of chicken manure biochar (CMB) and chicken manure integrated microbial consortium (CMMC) as co-amendments were assessed on compost maturity and reduction of greenhouse gases and ammonia (NH3) emissions during chicken manure composting. Composting was conducted using six combinations of CMB and CMCC (0 % CMB + 0 % CMMC, 0 % CMB + 10 % CMMC, 2 % CMB + 10 % CMMC, 4 % CMB + 10 % CMMC, 6 % CMB + 10 % CMMC, 10 % CMB + 10 % CMMC added on a dry weight basis) in six polyvinyl chloride composting reactors for 42 days under an aerobic environment. Co-amendment of CMB and CMMC extended the thermophilic stage and promoted compost maturity. The release of greenhouse gases [nitrous oxide (N2O) and methane (CH4)] and NH3 from treatments co-amended by CMB and CMMC were reduced by 19.0-27.4 %, 9.3-55.9 % and 24.2-56.9 %, respectively, compared with the control. In addition, a redundancy analysis showed that the C/N ratio and temperature had a significant relationship with greenhouse gases and NH3 emissions among all physiochemical characteristics.
  •  
2.
  • Duan, Yumin, et al. (författare)
  • Insight to bacteria community response of organic management in apple orchard-bagasse fertilizer combined with biochar
  • 2022
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 286
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on the sustainable development practice-zero growth in chemical fertilizer application, this article used bagasse organic fertilizer and rice husk derived biochar to investigate the response of soil bacterial community in apple orchard. Aimed at realize the soil quality improvement and biomass resource recovery to contribute agricultural and environmental sustainability. The co-trophic Proteobacteria was predominant in all the treatments (29–36 %) and enriched in non-nitrifying Alphaproteobacteria (9–11 %) and ammonia oxidant Betaproteobacteria (8–10 %), especially richest in bagasse fertilizer combine biochar treated soil. In addition, bacterial community variation was assessed by alpha and beta diversity, four treatments dispersed distribution and richer abundance observed in combined apply bagasse fertilizer and biochar treatment (3909.22 observed-species) than single application (3729.88 and 3646.58 observed-species). Biochar as microbial carrier combined organic fertilizer were established synergistic interaction and favorable to organic matter availability during sustainable agriculture. Finally, integrated biochar-bagasse fertilizer was richer than single organic or biochar fertilization in improving soil bacterial diversity, notably by promoting the metabolism of copiotrophic bacteria, nutrient cycling, plant growth and disease inhibit-related bacteria.
  •  
3.
  • Duan, Yumin, et al. (författare)
  • Succession of keratin-degrading bacteria and associated health risks during pig manure composting
  • 2020
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 258
  • Tidskriftsartikel (refereegranskat)abstract
    • The alteration of microbial dynamics and their divergence were evaluated in bristles containing pig manure (PM) compost with different concentrations of coconut shell biochar [0% (T1), 2.5% (T2), 5.0% (T3), 7.5% (T4) and 10% (T5)] amendment. The results revealed that the CB amendment significantly increased the keratin degradation efficiency and bacterial diversity during composting. The richest bacterial diversity and the highest keratin reduction of 39.1% were observed in the PM compost with a 7.5% CB amendment. The most abundant phyla were Firmicutes and Actinobacteria (which accounted for 87.91% and 12.09%, respectively), and the superior genera were Bacilli and Clostridia (which accounted for 23.52% and 61.17%, respectively). In addition, a dimensionality analysis from principal coordinate’s analysis and non-metric multidimensional scaling showed that the bacterial community had a significant divergence among the different dosages of CB. Furthermore, the correlation found in a canonical correspondence analysis illustrated that the physio-chemical environmental factors were more relevant for the bacterial community within the CB in the compost than in that in the control sample. Overall, the application of biochar for composting altered the typical selectivity for functional bacteria and further influenced the organic waste biotransformation during bristle-containing PM composting. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
4.
  • Duan, Yumin, et al. (författare)
  • Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives
  • 2022
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361 .- 1873-7153. ; 325, s. 124846-124846
  • Tidskriftsartikel (refereegranskat)abstract
    • With the huge energy demand inevitably exacerbates the non-renewable resources depletion and ecological-social challenges, renewable energy has become a crucial participant in sustainable strategy. Biorefinery emerged as a sustainable approach and recognized promising transformation platforms for products, to achieve circular bioeconomy which focuses on the biomass efficient and sustainable valorization, promotes resource regeneration and restorative. The emerged biowaste biorefinery has proved as sustainable approach for integrated bioproducts and further applied this technology in industrial, commercial, agricultural and energy sectors. Based on carbon neutral sustainable development, this review comprehensive explained the biowaste as renewable resource generation and resource utilization technologies from the perspective of energy, nutrient and material recovery in the concept of biorefinery. Integrate biorefinery concepts into biowaste management is promise for conversion biowaste into value-added materials and contribute as driving force to cope with resource scarcity, climate changes and huge material demand in circular bioeconomy. In practice, the optimal of biorefinery technologies depends on environmentally friendly, economic and technical feasibility, social and policy acceptance. Additionally, policy interventions are necessary to promote biowaste biorefinery implements for circular bioeconomy and contribute to low-carbon cleaner environment.
  •  
5.
  •  
6.
  • Liu, Tao, et al. (författare)
  • Current status of global warming potential reduction by cleaner composting
  • 2021
  • Ingår i: Energy and Environment. - : SAGE Publications Inc.. - 0958-305X .- 2048-4070. ; 32:6, s. 1002-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • The global living standards are currently undergoing a stage of growth; however, such improvement also brings some challenges. Global warming is the greatest threat to all living things and attracts more and more attention on a global scale due to the rapid development of economy. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the common components of greenhouse gases, which contribute to the global warming. Mitigation technologies for these gas emissions are urgently needed in every industry for the aim of cleaner production. Traditional agriculture also contributes significantly to enhance the greenhouse gases emission. Composting is a novel and economic greenhouse gases mitigation strategy compared to other technologies in terms of the organic waste disposal. Some of the European countries showed an increase of more than 50% in the composting rate. The microbial respiration, nitrification and denitrification processes, and the generation of anaerobic condition makes the emission of greenhouse gases inevitable during composting. However, although there have been a lot of papers that focused on the reduction of greenhouse gases emission in composting, none of these has summarized the methods of reducing the emission of greenhouse gases during the composting. This review discusses the benefit of composting in greenhouse gases mitigation in the organic waste management and the current methods to improve mitigation efficiency during cleaner composting. Key physical, chemical, and biological parameters related to greenhouse gases mitigation strategies were precisely studied to give a deep understanding about the emission of greenhouse gases during cleaner composting. Furthermore, the mechanism of greenhouse gases emission mitigation strategies for cleaner composting based on various external measures would be helpful for the exploration of novel and effective mitigation strategies. © The Author(s) 2019.
  •  
7.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Effect of biochar and bacterial inoculum additions on cow dung composting
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 297
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study evaluates the effectiveness of different types of biochar additives and bacterial inoculation on gaseous emission, nutrient preservation, and relevant functional bacterial community during cow manure composting. The result revealed that biochar and bacterial consortium inoculation effectively inhibited gaseous emission and improved carbon and nitrogen sequestration, remarkably enriching the abundance of the functional bacteria community. Notably, superior efficacy was found in 12% wheat straw biochar and bacterial consortium amendment composting of T6 with the lowest cumulative CO2-C and NH3-N (308.02 g and 12.71 g, respectively), minimal total C and N losses, and the highest bacterial population. Additionally, gaseous emission exhibited a strong correlation between physicochemical properties with intersection of 66.78% and a unique substrate utilizing bacterial communities. Consequently, the integrated application of biochar and bacterial consortium inoculation was suggested as an efficient method to adjust microbial activity and facilitate cellulose-rich waste degradation, enabling efficient management of organic waste from cow manure and wheat straw by composting.
  •  
8.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing
  • 2020
  • Ingår i: Renewable energy. - : Elsevier. - 0960-1481 .- 1879-0682. ; 152, s. 421-429
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of bamboo biochar (BB) variables on gaseous emissions, maturity and microbial dynamics during composting of sheep manure were investigated. The experiments were conducted with six different ratio of BB (0%, 2%, 4%, 6%, 8% and 10% dry weight based) and 0% is compiled as control. The results showed that 10%BB provided rapid mineralization and less time duration of compost maturity. 10% BB has the excellent impact on greenhouse gas (GHG) emission reduction and nutrients conservation (nitrogen and carbon losses were 13.40 g/kg and 124.42 g/kg) as compared to other treatments. Control was significantly different from other treatments in terms of GHG emission and nitrogen loss and had the lowest germination index after 42 days composting. BB addition were the main factors influencing GHG emission and improve the bacterial abundance. There is a significant correlation among the analyzed physicochemical factors, gaseous emission and bacterial phylum is used 8-10% BB for SM composting. Higher percentages of BB not only reduced CH4 and N2O emissions but also showed significant influence on CO2 and NH3 losses as well as improve the end product quality. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
9.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 303
  • Tidskriftsartikel (refereegranskat)abstract
    • The effectiveness of specific concentrations of bamboo biochar (BB) on nutrient conservation based on gaseous emissions during poultry manure composting was investigated. The results indicate that the total carbon and nitrogen losses were significantly reduced with elevated of biochar from 542.8 to 148.9% and 53.5 to 12.6% (correspondingly with an additive of 0%, 2%, 4%, 6% and 8% to 10% BB dry weight based). The primary contributor was CO2 and NH3 losses (542.3-148.8% and 47.8-10.81%). The enzyme activities related to carbon and nitrogen metabolism indicated a positive and significantly enhanced with high concentration biochar amended composting. Simultaneously, the alteration of total organic carbon and total Kjeldahl nitrogen as well as maturity indexes during ultimate compost also confirmed a high quality product under higher content biochar amended composting. Carbon and nitrogen were best preserved with 10%BB and produced a superior final product. The analysis of a network and heat map illustrated the correlation of gaseous and physicochemical elements as well as enzyme activities, with an intersection of 68.81%.
  •  
10.
  • Mukesh Kumar, Awasthi, et al. (författare)
  • Relevance of biochar to influence the bacterial succession during pig manure composting
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 304
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of pig manure biochar amendment (PMBA) during the pig manure (PM) and wheat straw (WS) composting was evaluated. Five concentration of PMBA (0%, 2%, 4%, 6% and10%) were applied to explore the bacterial distributions in PM compost by 16SDNA amplicons sequencing. The results showed that the addition of 6% PMBA could significantly enhanced the bacterial community abundance compared with other composts, while control has relative less bacterial population (332 OTU). The visualization of phylogenetic tree and krona demonstrated the distinctive distribution of each composts, suggested that biochar dosages have an influence on bacterial communities’ variation during co-composting. Beta-diversity of distance matrix heat-map and principal component analysis confirmed that bacterial communities were considerably correlated with increasing PMBA. Redundancy also confirmed the similarity and discrepancy among all treatments and environmental factors. This work considered as the potential of PMBA as a booster in composting, where T4 has most plentiful bacterial community and diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy