SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dubrovin Vasilii) "

Sökning: WFRF:(Dubrovin Vasilii)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koutsouflakis, Emmanouil, et al. (författare)
  • Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb2@C79N
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 14:27, s. 9877-9892
  • Tidskriftsartikel (refereegranskat)abstract
    • Realization of stable spin states in surface-supported magnetic molecules is crucial for their applications in molecular spintronics, memory storage or quantum information processing. In this work, we studied the surface magnetism of dimetallo-azafullerene Tb2@C79N, showing a broad magnetic hysteresis in a bulk form. Surprisingly, monolayers of Tb2@C79N exhibited a completely different behavior, with the prevalence of a ground state with antiferromagnetic coupling at low magnetic field and a metamagnetic transition in the magnetic field of 2.5-4 T. Monolayers of Tb2@C79N were deposited onto Cu(111) and Au(111) by evaporation in ultra-high vacuum conditions, and their topography and electronic structure were characterized by scanning tunneling microscopy and spectroscopy (STM/STS). X-ray photoelectron spectroscopy (XPS), in combination with DFT studies, revealed that the nitrogen atom of the azafullerene cage tends to avoid metallic surfaces. Magnetic properties of the (sub)monolayers were then studied by X-ray magnetic circular dichroism (XMCD) at the Tb-M4,5 absorption edge. While in bulk powder samples Tb2@C79N behaves as a single-molecule magnet with ferromagnetically coupled magnetic moments and blocking of magnetization at 28 K, its monolayers exhibited a different ground state with antiferromagnetic coupling of Tb magnetic moments. To understand if this unexpected behavior is caused by a strong hybridization of fullerenes with metallic substrates, XMCD measurements were also performed for Tb2@C79N adsorbed on h-BN|Rh(111) and MgO|Ag(100). The co-existence of two forms of Tb2@C79N was found on these substrates as well, but magnetization curves showed narrow magnetic hysteresis detectable up to 25 K. The non-magnetic state of Tb2@C79N in monolayers is assigned to anionic Tb2@C79N− species with doubly-occupied Tb-Tb bonding orbital and antiferromagnetic coupling of the Tb moments. A charge transfer from the substrate or trapping of secondary electrons are discussed as a plausible origin of these species.
  •  
2.
  • Krylov, Denis S., et al. (författare)
  • Substrate-Independent Magnetic Bistability in Monolayers of the Single-Molecule Magnet Dy2ScN@C80 on Metals and Insulators
  • 2020
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:14, s. 5756-5764
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic hysteresis is demonstrated for monolayers of the single-molecule magnet (SMM) Dy2ScN@C80 deposited on Au(111), Ag(100), and MgO|Ag(100) surfaces by vacuum sublimation. The topography and electronic structure of Dy2ScN@C80 adsorbed on Au(111) were studied by STM. X-ray magnetic CD studies show that the Dy2ScN@C80 monolayers exhibit similarly broad magnetic hysteresis independent on the substrate used, but the orientation of the Dy2ScN cluster depends strongly on the surface. DFT calculations show that the extent of the electronic interaction of the fullerene molecules with the surface is increasing dramatically from MgO to Au(111) and Ag(100). However, the charge redistribution at the fullerene-surface interface is fully absorbed by the carbon cage, leaving the state of the endohedral cluster intact. This Faraday cage effect of the fullerene preserves the magnetic bistability of fullerene-SMMs on conducting substrates and facilitates their application in molecular spintronics.
  •  
3.
  • Westerström, Rasmus, et al. (författare)
  • Precise measurement of angles between two magnetic moments and their configurational stability in single-molecule magnets
  • 2021
  • Ingår i: Physical Review B. - 2469-9950. ; 104:22
  • Tidskriftsartikel (refereegranskat)abstract
    • A key parameter for the low-temperature magnetic coupling of in dinuclear lanthanide single-molecule magnets (SMMs) is the barrier UFA resulting from the exchange and dipole interactions between the two 4f moments. Here we extend the pseudospin model previously used to describe the ground state of dinuclear endofullerenes to account for variations in the orientation of the single-ion anisotropy axes and apply it to the two SMMs Dy2ScN@C80 and Dy2TiC@C80. While x-ray magnetic circular dichroism (XMCD) indicates the same Jz=15/2 Dy ground state in both molecules, the Dy-Dy coupling strength and the stability of magnetization is distinct. We demonstrate that both the magnitude of the barrier UFA and the angle between the two 4f moments are determined directly from precise temperature-dependent magnetization data to an accuracy better than 1. The experimentally found angles between the 4f moments are in excellent agreement with calculated angles between the quantization axes of the two Dy ions. Theory indicates a larger deviation of the orientation of the Dy magnetic moments from the Dy bond axes to the central ion in Dy2TiC@C80. This may explain the lower stability of the magnetization in Dy2TiC@C80, although it exhibits a ∼49% stronger exchange coupling than in Dy2ScN@C80.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy