SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dubrovinsky Leonid S.) "

Sökning: WFRF:(Dubrovinsky Leonid S.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bykov, Maxim, et al. (författare)
  • High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN4 Polymorph
  • 2021
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 126:17
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN4. A triclinic phase of beryllium tetranitride tr-BeN4 was synthesized from elements at similar to 85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN4 layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated pi systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN4 layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN4 layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
  •  
3.
  • Bykova, Elena, et al. (författare)
  • Novel Class of Rhenium Borides Based on Hexagonal Boron Networks Interconnected by Short B-2 Dumbbells
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:18, s. 8138-8152
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (similar to 1.7 angstrom) axially oriented B-2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H-V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReBx compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties.
  •  
4.
  •  
5.
  • Dzwilewski, Andrzej, et al. (författare)
  • Characterization of phases synthesized close to the boundary of C60 collapse at high temperature high pressure conditions
  • 2007
  • Ingår i: Diamond and related materials. - : Elsevier BV. - 0925-9635 .- 1879-0062. ; 16:8, s. 1550-1556
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • Two sets of samples were synthesized at high pressure high temperature conditions in the P-T region where C-60 molecules collapse into a nearly amorphous graphite-like hard carbon phase. For the first set, heating temperature was varied at fixed pressure and preparation time. For the second set, synthesis time was varied at fixed pressure and fixed temperature. Detailed structural characterization of samples was performed using Raman spectroscopy and powder XRD. Mechanical properties of the samples have been studied by nanoindentation method. It has been found that duration of heat treatment under high pressure is an important parameter which influences the temperature of fullerene cage collapse. Both tetragonal and rhombohedral polymeric phases transform into hard carbon phase over a rather narrow temperature interval, but the tetragonal phase shows somewhat increased stability against C-60 collapse. Viscoelastic mechanical behavior during nanoindentation was observed for fullerene polymers but not for graphite-like hard carbon phase. Possible mechanism for nucleation of the hard carbon phase in polymeric C-60 networks is discussed.
  •  
6.
  •  
7.
  • Laniel, Dominique, et al. (författare)
  • High-Pressure Synthesis of the beta-Zn3N2 Nitride and the alpha-ZnN4 and beta-ZnN4 Polynitrogen Compounds
  • 2021
  • Ingår i: Inorganic Chemistry. - : AMER CHEMICAL SOC. - 0020-1669 .- 1520-510X. ; 60:19, s. 14594-14601
  • Tidskriftsartikel (refereegranskat)abstract
    • High-pressure nitrogen chemistry has expanded at a formidable rate over the past decade, unveiling the chemical richness of nitrogen. Here, the Zn-N system is investigated in laser-heated diamond anvil cells by synchrotron powder and single-crystal X-ray diffraction, revealing three hitherto unobserved nitrogen compounds: beta-Zn3N2, alpha-ZnN4, and beta-ZnN4, formed at 35.0, 63.5, and 81.7 GPa, respectively. Whereas beta-Zn3N2 contains the N3- nitride, both ZnN4 solids are found to be composed of polyacetylene-like [N-4](infinity)(2-) chains. Upon the decompression of beta-ZnN4 below 72.7 GPa, a first-order displacive phase transition is observed from beta-ZnN4 to alpha-ZnN4. The alpha-ZnN4 phase is detected down to 11.0 GPa, at lower pressures decomposing into the known alpha-Zn3N2 (space group Ia (3) over bar) and N-2. The equations of states of beta-ZnN4 and alpha-ZnN4 are also determined, and their bulk moduli are found to be K-0 = 126(9) GPa and K-0 = 76(12) GPa, respectively. Density functional theory calculations were also performed and provide further insight into the Zn-N system. Moreover, comparing the Mg-N and Zn-N systems underlines the importance of minute chemical differences between metal cations in the resulting synthesized phases.
  •  
8.
  • Pakhomova, Anna, et al. (författare)
  • Penta- and hexa-coordinated beryllium and phosphorus in high-pressure modifications of CaBe2P2O8
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Beryllium oxides have been extensively studied due to their unique chemical properties and important technological applications. Typically, in inorganic compounds beryllium is tetrahedrally coordinated by oxygen atoms. Herein based on results of in situ single crystal X-ray diffraction studies and ab initio calculations we report on the high-pressure behavior of CaBe2P2O8, to the best of our knowledge the first compound showing a step-wise transition of Be coordination from tetrahedral (4) to octahedral (6) through trigonal bipyramidal (5). It is remarkable that the same transformation route is observed for phosphorus. Our theoretical analysis suggests that the sequence of structural transitions of CaBe2P2O8 is associated with the electronic transformation from predominantly molecular orbitals at low pressure to the state with overlapping electronic clouds of anions orbitals.
  •  
9.
  • Pakhomova, Anna, et al. (författare)
  • Polymorphs of the Gadolinite-Type Borates ZrB2O5 and HfB2O5 Under Extreme Pressure
  • 2021
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 27:19, s. 6007-6014
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on the results from previous high-pressure experiments on the gadolinite-type mineral datolite, CaBSiO4(OH), the behavior of the isostructural borates beta-HfB2O5 and beta-ZrB2O5 have been studied by synchrotron-based in situ high-pressure single-crystal X-ray diffraction experiments. On compression to 120 GPa, both borate layer-structures are preserved. Additionally, at approximate to 114 GPa, the formation of a second phase can be observed in both compounds. The new high-pressure modification gamma-ZrB2O5 features a rearrangement of the corner-sharing BO4 tetrahedra, while still maintaining the four- and eight-membered rings. The new phase gamma-HfB2O5 contains ten-membered rings including the rare structural motif of edge-sharing BO4 tetrahedra with exceptionally short B-O and B...B distances. For both structures, unusually high coordination numbers are found for the transition metal cations, with ninefold coordinated Hf4+, and tenfold coordinated Zr4+, respectively. These findings remarkably show the potential of cold compression as a low-energy pathway to discover metastable structures that exhibit new coordinations and structural motifs.
  •  
10.
  • Sergueev, I., et al. (författare)
  • Hyperfine Splitting and Room-Temperature Ferromagnetism of Ni at Multimegabar Pressure
  • 2013
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 111:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic and elastic properties of Ni metal have been studied up to 260 GPa by nuclear forward scattering of synchrotron radiation with the 67.4 keV Mossbauer transition of Ni-61. The observed magnetic hyperfine splitting confirms the ferromagnetic state of Ni up to 260 GPa, the highest pressure where magnetism in any material has been observed so far. Ab initio calculations reveal that the pressure evolution of the hyperfine field, which features a maximum in the range of 100 to 225 GPa, is a relativistic effect. The Debye energy obtained from the Lamb-Mossbauer factor increases from 33 me V at ambient pressure to 60 me V at 100 GPa. The change of this energy over volume compression is well described by a Gruneisen parameter of 2.09.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy