SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duch M A) "

Sökning: WFRF:(Duch M A)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • García Balcaza, V, et al. (författare)
  • Fast Monte Carlo codes for occupational dosimetry in interventional radiology
  • 2021
  • Ingår i: Physica Medica. - : Elsevier BV. - 1120-1797. ; 85, s. 166-174
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Interventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results.METHODS: Two fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure.RESULTS: The new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic set-ups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring.CONCLUSION: The study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.
  •  
2.
  • O'Connor, U, et al. (författare)
  • Feasibility study of computational occupational dosimetry : evaluating a proof-of-concept in an endovascular and interventional cardiology setting
  • 2022
  • Ingår i: Journal of Radiological Protection. - : IOP Publishing. - 1361-6498 .- 0952-4746. ; 42:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual monitoring of radiation workers is essential to ensure compliance with legal dose limits and to ensure that doses are As Low As Reasonably Achievable. However, large uncertainties still exist in personal dosimetry and there are issues with compliance and incorrect wearing of dosimeters. The objective of the PODIUM (Personal Online Dosimetry Using Computational Methods) project was to improve personal dosimetry by an innovative approach: the development of an online dosimetry application based on computer simulations without the use of physical dosimeters. Occupational doses were calculated based on the use of camera tracking devices, flexible individualised phantoms and data from the radiation source. When combined with fast Monte Carlo simulation codes, the aim was to perform personal dosimetry in real-time. A key component of the PODIUM project was to assess and validate the methodology in interventional radiology workplaces where improvements in dosimetry are needed. This paper describes the feasibility of implementing the PODIUM approach in a clinical setting. Validation was carried out using dosimeters worn by Vascular Surgeons and Interventional Cardiologists during patient procedures at a hospital in Ireland. Our preliminary results from this feasibility study show acceptable differences of the order of 40% between calculated and measured staff doses, in terms of the personal dose equivalent quantity Hp(10), however there is a greater deviation for more complex cases and improvements are needed. The challenges of using the system in busy interventional rooms have informed the future needs and applicability of PODIUM. The availability of an online personal dosimetry application has the potential to overcome problems that arise from the use of current dosimeters. In addition, it should increase awareness of radiation protection among staff. Some limitations remain and a second phase of development would be required to bring the PODIUM method into operation in a hospital setting. However, an early prototype system has been tested in a clinical setting and the results from this two-year proof-of-concept PODIUM project are very promising for future development.
  •  
3.
  • Almén, A, et al. (författare)
  • Personal Dosimetry Using Monte-Carlo Simulations For Occupational Dose Monitoring In Interventional Radiology : The Results Of A Proof Of Concept In A Clinical Setting
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 1742-3406 .- 0144-8420. ; 195:44624, s. 391-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure levels to staff in interventional radiology (IR) may be significant and appropriate assessment of radiation doses is needed. Issues regarding measurements using physical dosemeters in the clinical environment still exist. The objective of this work was to explore the prerequisites for assessing staff radiation dose, based on simulations only. Personal dose equivalent, Hp(10), was assessed using simulations based on Monte Carlo methods. The position of the operator was defined using a 3D motion tracking system. X-ray system exposure parameters were extracted from the x-ray equipment. The methodology was investigated and the simulations compared to measurements during IR procedures. The results indicate that the differences between simulated and measured staff radiation doses, in terms of the personal dose equivalent quantity Hp(10), are in the order of 30-70 %. The results are promising but some issues remain to be solved, e.g. an automated tracking of movable parts such as the ceiling-mounted protection shield.
  •  
4.
  •  
5.
  • Adolfsson, Karin H., et al. (författare)
  • Importance of Surface Functionalities for Antibacterial Properties of Carbon Spheres
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley. - 2366-7486.
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon spheres (CS) are interesting materials for antibacterial applications. Herein, CS are produced by a green process utilizing microwave-assisted hydrothermal treatment of cellulose. The CS are then postmodified in acidic and basic solutions to evaluate the influence of different functionalities on antibacterial properties. CS contain OH/COOH, C Symbol of the Klingon Empire C, and C Symbol of the Klingon Empire O functionalities, while O-CS produced by acid treatment of CS have additional COOH, and NH/NH2 groups, resulting in carbon spheres with negatively and positively charged groups in dispersion. Treatment with base (Na-CS) removes low molecular weight species with oxygen and results in carbon spheres with the highest C/O ratio. CS, O-CS, and Na-CS have nonporous morphology and are in micro/nanometer sizes, although, smaller sized spheres, hollow spheres, and fragments are also attained in the case of O-CS. O-CS show antibacterial activity toward both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa). The minimum inhibitory concentration is 200 and 400 mu g mL(-1) for S. aureus and P. aeruginosa, respectively, and is achieved only after 3 h of incubation. Neither CS nor Na-CS exhibit antibacterial activity. The antibacterial activity is suggested to originate from electrostatic interactions between O-CS and the bacteria.
  •  
6.
  • Duch, J., et al. (författare)
  • Work function modifications of graphite surface via oxygen plasma treatment
  • 2017
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 419, s. 439-446
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly –OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite—OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the –OH surface coverage (from 0.70 to 1.03 × 1014 groups cm−2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy