SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dudarev Oleg V.) "

Sökning: WFRF:(Dudarev Oleg V.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Panova, Elena V., et al. (författare)
  • ЛИТОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ДОННЫХ ОСАДКОВ И ИХ ВЛИЯНИЕ НА РАСПРЕДЕЛЕНИЕОРГАНИЧЕСКОГО МАТЕРИАЛА НА ТЕРРИТОРИИ ВОСТОЧНО|СИБИРСКОГО ШЕЛЬФА [Lithological features of surface sediment and their influence on organic matter distribution across the East-Siberian Arctic shelf]
  • 2017
  • Ingår i: Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. - 2500-1019 .- 2413-1830. ; 328:8, s. 94-105
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is undergoing rapid climate change, which affects the global and regional carbon cycles. The East Siberian Arctic shelf, that is believed to store huge amounts of organic carbon in different pools, has been the subject of growing scientific interest in recent decades. The aim of the work was to study the lithological features of bottom sediments on the East Siberian Arctic shelf and to assess their influence on the spatial distribution of organic material in the study area. Materials and methods. The sediment samples were collected during the 45-day multidisciplinary SWERUS-C3 expedition on IB ODEN in summer 2014. Surface sediments from inner and middle East Siberian Arctic shelf were collected in summer 2008 during the International Siberian Shelf Study (ISSS-08) campaign onboard the HV Yakob Smirnitsky. The samples were analyzed for the grain size and specific surface area characteristics and total organic carbon content. It is shown that the subglacial sedimentation and the accumulation of predominantly fine-grained sediments prevail within the study area. Nevertheless, atypical sand zones were identified on the outer shelf. The authors have suggested several external factors, including modern and paleo ice scouring in the early Holocene, and intensive gas venting, which are accompanied by removal of fine-grained sediments. The paper considers spatial distribution of organic matter in the bottom sediments of the East Siberian Arctic shelf and its interrelation with their lithological properties.
  •  
2.
  • Charkin, Alexander N., et al. (författare)
  • Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas : a case study in the Buor-Khaya Gulf, Laptev Sea
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11:5, s. 2305-2327
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (Ra-224, Ra-223, Ra-228, and Ra-226) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. Ra-224 and Ra-224/Ra-223 diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1.7 x 10(6) m(3) d(-1) or 19.9 m(3) s(-1), which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.
  •  
3.
  • Bischoff, Juliane, et al. (författare)
  • Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:17, s. 4899-4914
  • Tidskriftsartikel (refereegranskat)abstract
    • The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk delta C-13 measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'(soil) ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R'(soil) displays a negative linear correlation with bulk delta C-13 measurements (r(2) = -0.73, p = < 0 : 001). When compared to the GDGT-based OC proxy, the branched and isoprenoid tetraether (BIT) index, a decoupled (non-linear) behaviour on the shelf was observed, particularly in the Buor-Khaya Bay, where the R'(soil) shows limited variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'(soil) of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R'(soil) correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental conditions (e.g. temperature, pH), but other physiological controls on microbial bacteriohopanepolyol (BHP) production under psychrophilic conditions are as yet unknown.
  •  
4.
  • Bröder, Lisa, et al. (författare)
  • Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:17, s. 5003-5019
  • Tidskriftsartikel (refereegranskat)abstract
    • Ongoing global warming in high latitudes may cause an increasing supply of permafrost-derived organic carbon through both river discharge and coastal erosion to the Arctic shelves. Mobilized permafrost carbon can be either buried in sediments, transported to the deep sea or degraded to CO2 and outgassed, potentially constituting a positive feedback to climate change. This study aims to assess the fate of terrigenous organic carbon (TerrOC) in the Arctic marine environment by exploring how it changes in concentration, composition and degradation status across the wide Laptev Sea shelf. We analyzed a suite of terrestrial biomarkers as well as source-diagnostic bulk carbon isotopes (delta C-13, Delta C-14) in surface sediments from a Laptev Sea transect spanning more than 800 km from the Lena River mouth (< 10m water depth) across the shelf to the slope and rise (2000-3000m water depth). These data provide a broad view on different TerrOC pools and their behavior during cross-shelf transport. The concentrations of lignin phenols, cutin acids and high-molecular-weight (HMW) wax lipids (tracers of vascular plants) decrease by 89-99% along the transect. Molecular-based degradation proxies for TerrOC (e.g., the carbon preference index of HMW lipids, the HMW acids / alkanes ratio and the acid / aldehyde ratio of lignin phenols) display a trend to more degraded TerrOC with increasing distance from the coast. We infer that the degree of degradation of permafrost-derived TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport. Future work should therefore seek to constrain cross-shelf transport times in order to compute a TerrOC degradation rate and thereby help to quantify potential carbon-climate feedbacks.
  •  
5.
  • Bröder, Lisa, et al. (författare)
  • Historical records of organic matter supply and degradation status in the East Siberian Sea
  • 2016
  • Ingår i: Organic Geochemistry. - : Elsevier BV. - 0146-6380 .- 1873-5290. ; 91, s. 16-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Destabilization and degradation of permafrost carbon in the Arctic regions could constitute a positive feedback to climate change. A better understanding of its fate upon discharge to the Arctic shelf is therefore needed. In this study, bulk carbon isotopes as well as terrigenous and marine biomarkers were used to construct two centennial records in the East Siberian Sea. Differences in topsoil and Pleistocene Ice Complex Deposit permafrost concentrations, modeled using delta C-13 and Delta C-14, were larger between inner and outer shelf than the changes over time. Similarly, lignin-derived phenol and cutin acid concentrations differed by a factor of ten between the two stations, but did not change significantly over time, consistent with the dual-carbon isotope model. High molecular weight (HMW) n-alkane and n-alkanoic acid concentrations displayed a smaller difference between the two stations (factor of 3-6). By contrast, the fraction for marine OC drastically decreased during burial with a half-life of 19-27 years. Vegetation and degradation proxies suggested supply of highly degraded gymnosperm wood tissues. Lipid Carbon Preference Index (CPI) values indicated more extensively degraded HMW n-alkanes on the outer shelf with no change over time, whereas n-alkanoic acids appeared to be less degraded toward the core top with no large differences between the stations. Taken together, our results show larger across-shelf changes than down-core trends. Further investigation is required to establish whether the observed spatial differences are due to different sources for the two depositional settings or, alternatively, a consequence of hydrodynamic sorting combined with selective degradation during cross-shelf transport.
  •  
6.
  • Feng, Xiaojuan, et al. (författare)
  • Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:35, s. 14168-14173
  • Tidskriftsartikel (refereegranskat)abstract
    • Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol C-14 contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.
  •  
7.
  • Feng, Xiaojuan, et al. (författare)
  • Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic : C-14 characteristics of sedimentary carbon components and their environmental controls
  • 2015
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 29:11, s. 1855-1873
  • Tidskriftsartikel (refereegranskat)abstract
    • Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular C-14 measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C-24,C-26,C-28), plant wax FAs (C(24,26,2)8), and n-alkanes (C-27,C-29,C-31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these old terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C-16,C-18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in C-14, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular C-14 analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.
  •  
8.
  • Keskitalo, Kirsi, et al. (författare)
  • Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea
  • 2017
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 13:9, s. 1213-1226
  • Tidskriftsartikel (refereegranskat)abstract
    • Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past similar to 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with delta C-13 suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between similar to 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Delta C-14, Delta C-13) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.
  •  
9.
  •  
10.
  • Martens, Jannik, 1991-, et al. (författare)
  • Circum-Arctic release of terrestrial carbon varies between regions and sources
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic change is expected to destabilize terrestrial carbon (terrOC) in soils and permafrost, leading to fluvial release, greenhouse gas emission and climate feedback. However, landscape heterogeneity and location-specific observations complicate large-scale assessments of terrOC mobilization. Here we reveal differences in terrOC release, deduced from the Circum-Arctic Sediment Carbon Database (CASCADE) using source-diagnostic (δ13C-Δ14C) and carbon accumulation data. The results show five-times larger terrOC release from the Eurasian than from the American Arctic. Most of the circum-Arctic terrOC originates from near-surface soils (61%); 30% stems from Pleistocene-age permafrost. TerrOC translocation, relative to land-based terrOC stocks, varies by a factor of five between circum-Arctic regions. Shelf seas with higher relative terrOC translocation follow the spatial pattern of recent Arctic warming, while such with lower translocation reflect long-distance lateral transport with efficient remineralization of terrOC. This study provides a receptor-based perspective for how terrOC release varies across the circum-Arctic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy