SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duesberg Georg S.) "

Sökning: WFRF:(Duesberg Georg S.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lemme, Max C., et al. (författare)
  • Nanoelectromechanical Sensors Based on Suspended 2D Materials
  • 2020
  • Ingår i: RESEARCH. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2639-5274. ; 2020
  • Forskningsöversikt (refereegranskat)abstract
    • The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.
  •  
2.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
3.
  • Enrico, Alessandro, et al. (författare)
  • Ultrafast and Resist-Free Nanopatterning of 2D Materials by Femtosecond Laser Irradiation
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 17:9, s. 8041-8052
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of two-dimensional (2D) materials is promising for electronic, photonic, and sensing devices since they possess large surface-to-volume ratios, high mechanical strength, and broadband light sensitivity. While significant advances have been made in synthesizing and transferring 2D materials onto different substrates, there is still the need for scalable patterning of 2D materials with nanoscale precision. Conventional lithography methods require protective layers such as resist or metals that can contaminate or degrade the 2D materials and deteriorate the final device performance. Current resist-free patterning methods are limited in throughput and typically require custom-made equipment. To address these limitations, we demonstrate the noncontact and resist-free patterning of platinum diselenide (PtSe2), molybdenum disulfide (MoS2), and graphene layers with nanoscale precision at high processing speed while preserving the integrity of the surrounding material. We use a commercial, off-the-shelf two-photon 3D printer to directly write patterns in the 2D materials with features down to 100 nm at a maximum writing speed of 50 mm/s. We successfully remove a continuous film of 2D material from a 200 μm × 200 μm substrate area in less than 3 s. Since two-photon 3D printers are becoming increasingly available in research laboratories and industrial facilities, we expect this method to enable fast prototyping of devices based on 2D materials across various research areas.
  •  
4.
  • Fan, Xuge, et al. (författare)
  • Rapid and Large-Area Visualization of Grain Boundaries in MoS2 on SiO2 Using Vapor Hydrofluoric Acid
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:30, s. 34049-34057
  • Tidskriftsartikel (refereegranskat)abstract
    • Grain boundaries in two-dimensional (2D) material layers have an impact on their electrical, optoelectronic, and mechanical properties. Therefore, the availability of simple large-area characterization approaches that can directly visualize grains and grain boundaries in 2D materials such as molybdenum disulfide (MoS2) is critical. Previous approaches for visualizing grains and grain boundaries in MoS2 are typically based on atomic resolution microscopy or optical imaging techniques (i.e., Raman spectroscopy or photoluminescence), which are complex or limited to the characterization of small, micrometer-sized areas. Here, we show a simple approach for an efficient large-area visualization of the grain boundaries in continuous chemical vapor-deposited films and domains of MoS2 that are grown on a silicon dioxide (SiO2) substrate. In our approach, the MoS2 layer on a SiO2/Si substrate is exposed to vapor hydrofluoric acid (VHF), resulting in the differential etching of SiO2 at the MoS2 grain boundaries and SiO2 underneath the MoS2 grains as a result of VHF diffusing through the defects in the MoS2 layer at the grain boundaries. The location of the grain boundaries can be seen by the resulting SiO2 pattern using optical microscopy, scanning electron microscopy, or Raman spectroscopy. This method allows for a simple and rapid evaluation of grain sizes in 2D material films over large areas, thereby potentially facilitating the optimization of synthesis processes and advancing applications of 2D materials in science and technology.
  •  
5.
  • Huang, Po-Han, et al. (författare)
  • 3d Printing of Silica-HSQ Composites with Sub-Micrometer Resolution and Selectively Generated Silicon Nanocrystals
  • 2023
  • Ingår i: 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers 2023. - : Institute of Electrical and Electronics Engineers Inc.. ; , s. 433-436
  • Konferensbidrag (refereegranskat)abstract
    • Silica glass is a high-performance material that has become essential in modern life. Functionalization of silica glass is critically important for its optical applications such as in lenses and filters, which is however challenging to realize and manipulate in 3D-printed silica glass. Here, we report 3D printing of solid composites of silica glass and hydrogen silsesquioxane (HSQ) with sub-micrometer resolution. This is achieved by encapsulating HSQ inside silica glass by selectively transforming HSQ to silica glass by multi-photon absorption using a femtosecond laser. Furthermore, we demonstrated selective generation of photoluminescent silicon nanocrystals in the HSQ regions inside the composites by annealing. This is based on our experimental observation that the silica glass transformed from HSQ by multi-photon absorption, unlike HSQ, does not generate silicon nanocrystals upon annealing.
  •  
6.
  • Huang, Po-Han, et al. (författare)
  • Three-dimensional printing of silica glass with sub-micrometer resolution
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Silica glass is a high-performance material used in many applications such as lenses, glassware, and fibers. However, modern additive manufacturing of micro-scale silica glass structures requires sintering of 3D-printed silica-nanoparticle-loaded composites at similar to 1200 degrees C, which causes substantial structural shrinkage and limits the choice of substrate materials. Here, 3D printing of solid silica glass with sub-micrometer resolution is demonstrated without the need of a sintering step. This is achieved by locally crosslinking hydrogen silsesquioxane to silica glass using nonlinear absorption of sub-picosecond laser pulses. The as-printed glass is optically transparent but shows a high ratio of 4-membered silicon-oxygen rings and photoluminescence. Optional annealing at 900 degrees C makes the glass indistinguishable from fused silica. The utility of the approach is demonstrated by 3D printing an optical microtoroid resonator, a luminescence source, and a suspended plate on an optical-fiber tip. This approach enables promising applications in fields such as photonics, medicine, and quantum-optics.
  •  
7.
  •  
8.
  • Parhizkar, Shayan, et al. (författare)
  • Two-Dimensional Platinum Diselenide Waveguide-Integrated Infrared Photodetectors
  • 2022
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 9:3, s. 859-867
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-cost, easily integrable photodetectors (PDs) for silicon (Si) photonics are still a bottleneck for photonic-integrated circuits (PICs), especially for wavelengths above 1.8 mu m. Multilayered platinum diselenide (PtSe2) is a semi-metallic two-dimensional (2D) material that can be synthesized below 450 degrees C. We integrate PtSe2-based PDs directly by conformal growth on Si waveguides. The PDs operate at 1550 nm wavelength with a maximum responsivity of 11 mA/W and response times below 8.4 mu s. Fourier-transform IR spectroscopy in the wavelength range from 1.25 to 28 mu m indicates the suitability of PtSe2 for PDs far into the IR wavelength range. Our PtSe2 PDs integrated by direct growth outperform PtSe2 PDs manufactured by standard 2D layer transfer. The combination of IR responsivity, chemical stability, selective and conformal growth at low temperatures, and the potential for high carrier mobility makes PtSe2 an attractive 2D material for optoelectronics and PICs.
  •  
9.
  • Quellmalz, Arne, et al. (författare)
  • Large-area integration of two-dimensional materials and their heterostructures by wafer bonding
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to 4520 cm2V-1s-1. Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing. The existing integration approaches for 2D materials often degrade material properties and are not compatible with industrial processing. Here, the authors devise an adhesive wafer bonding strategy to transfer and stack monolayers, suitable for back end of the line integration of 2D materials.
  •  
10.
  • Quellmalz, Arne, et al. (författare)
  • Large-Area Integration of Two-Dimensional Materials and Their Heterostructures Using Wafer Bonding
  • 2021
  • Ingår i: Nature Communications. - 2041-1723. ; 12, s. 917-
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to 4520cm2V−1s−14520cm2V−1s−1. Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (7)
konferensbidrag (2)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Stemme, Göran, 1958 (5)
Quellmalz, Arne (5)
Lemme, Max C. (4)
Laakso, Miku, 1989- (3)
Roxhed, Niclas (2)
Otto, Martin (2)
visa fler...
Lemme, Max (1)
Yang, Sheng (1)
Morandi, Vittorio (1)
Stemme, Göran (1)
Giesecke, Anna Lena (1)
Lipsanen, Harri (1)
Botas, Cristina (1)
Carriazo, Daniel (1)
Rojo, Teofilo (1)
Beyer, André (1)
Palermo, Vincenzo, 1 ... (1)
Parthenios, John (1)
Papagelis, Konstanti ... (1)
Marzari, Nicola (1)
Niklaus, Frank (1)
McManus, John (1)
Coletti, Camilla (1)
Banszerus, Luca (1)
Stampfer, Christoph (1)
Backes, Claudia (1)
Bianco, Alberto (1)
Ferrari, Andrea C. (1)
Melucci, Manuela (1)
Prato, Maurizio (1)
Xia, Zhenyuan, 1983 (1)
Abdelkader, Amr M. (1)
Alonso, Concepcion (1)
Andrieux-Ledier, Ama ... (1)
Arenal, Raul (1)
Azpeitia, Jon (1)
Balakrishnan, Nilant ... (1)
Barjon, Julien (1)
Bartali, Ruben (1)
Bellani, Sebastiano (1)
Berger, Claire (1)
Berger, Reinhard (1)
Ortega, M. M. Bernal (1)
Bernard, Carlo (1)
Beton, Peter H. (1)
Boggild, Peter (1)
Bonaccorso, Francesc ... (1)
Barin, Gabriela Bori ... (1)
Bueno, Rebeca A. (1)
Castellanos-Gomez, A ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (10)
Linköpings universitet (2)
Chalmers tekniska högskola (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Teknik (9)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy