SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duffy J. Emmett) "

Sökning: WFRF:(Duffy J. Emmett)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edgar, Graham J., et al. (författare)
  • Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Among themost enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15 degrees N and -15 degrees S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.
  •  
2.
  • Stuart-Smith, Rick D., et al. (författare)
  • Integrating abundance and functional traits reveals new global hotspots of fish diversity
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 501:7468, s. 539-
  • Tidskriftsartikel (refereegranskat)abstract
    • Species richness has dominated our view of global biodiversity patterns for centuries(1,2). The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management(3,4). However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling)(5). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q(6)), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only(7,8). There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness(2,4). Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values.
  •  
3.
  • Stuart-Smith, Rick D., et al. (författare)
  • The potential of trait-based approaches to contribute to marine conservation
  • 2015
  • Ingår i: Marine Policy. - : Elsevier BV. - 0308-597X .- 1872-9460. ; 51, s. 148-150
  • Tidskriftsartikel (refereegranskat)abstract
    • The value of diversity metrics to represent ecological communities and inform broad-scale conservation objectives and policy has often been subject to debate and uncertainty [1,2]. In practice, diversity metrics are important in setting management and conservation priorities, just as economic indices contribute to global monetary and financial policies. Thus, key challenges for ecologists are to identify new ways to view and summarise patterns in biodiversity and improve on the metrics available for management purposes. In a recent paper on functional diversity patterns in reef fishes [3], we highlighted the potential of new insights gained from functional trait-based approaches to inform marine management, stressing the need to develop and refine biodiversity measures that are linked to ecology (rather than taxonomy). We used a unique, fisheries-independent reef fish identity and abundance dataset, collected using standardised methods from equatorial to high latitude regions all over the world, to provide the first global view of the distribution of individuals amongst species (including a measure of evenness) and functional traits amongst marine communities. A recent paper by Robinson et al. [4] published in Marine Policy criticised the use of our evenness index as a measure of biodiversity, and questioned the use of functional trait-based metrics derived from surveys of standardised areas for decisions relating to broad-scale management of marine systems. In this paper we respond to Robinson et al. and rebut their claims related to sampling bias and broad-scale applicability of trait-based approaches.
  •  
4.
  • Byrnes, J. E. K., et al. (författare)
  • Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions
  • 2014
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 5:2, s. 111-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Extensive research shows that more species-rich assemblages are generally more productive and efficient in resource use than comparable assemblages with fewer species. But the question of how diversity simultaneously affects the wide variety of ecological functions that ecosystems perform remains relatively understudied. It presents several analytical and empirical challenges that remain unresolved. In particular, researchers have developed several disparate metrics to quantify multifunctionality, each characterizing different aspects of the concept and each with pros and cons. We compare four approaches to characterizing multifunctionality and its dependence on biodiversity, quantifying (i) magnitudes of multiple individual functions separately, (ii) the extent to which different species promote different functions, (iii) the average level of a suite of functions and (iv) the number of functions that simultaneously exceeds a critical threshold. We illustrate each approach using data from the pan-European BIODEPTH experiment and the R multifunc package developed for this purpose, evaluate the strengths and weaknesses of each approach and implement several methodological improvements. We conclude that an extension of the fourth approach that systematically explores all possible threshold values provides the most comprehensive description of multifunctionality to date. We outline this method and recommend its use in future research. © 2013 British Ecological Society.
  •  
5.
  • Duffy, J. Emmett, et al. (författare)
  • A Pleistocene legacy structures variation in modern seagrass ecosystems
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems. 
  •  
6.
  • Duffy, J. Emmett, et al. (författare)
  • Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • In coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with strati fied in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including standard protocols, documentation, and sharing of resources at all stages of work flow, and secure archiving of open-access data. Because such a network is necessarily distributed, sustaining it depends on close engagement of local stakeholders and focusing on building and long-term maintenance of local capacity, particularly in the developing world. Realizing these recommendations will producemore effective, efficient, and responsive observing, a more accurate global picture of change in vegetated coastal systems, and stronger international capacity for sustaining observations.
  •  
7.
  • Leray, Matthieu, et al. (författare)
  • Natural experiments and long-term monitoring are critical to understand and predict marine host–microbe ecology and evolution
  • 2021
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 19:8, s. e3001322-e3001322
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.
  •  
8.
  • Yu, Lei, et al. (författare)
  • Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina)
  • 2023
  • Ingår i: Nature Plants. - 2055-026X .- 2055-0278. ; 9:8, s. 1207-1220
  • Tidskriftsartikel (refereegranskat)abstract
    • Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243ky (thousand years). Mediterranean populations were founded ~44kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy