SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duguet Y.) "

Sökning: WFRF:(Duguet Y.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ballan, M., et al. (författare)
  • Nuclear physics midterm plan at Legnaro National Laboratories (LNL)
  • 2023
  • Ingår i: European Physical Journal Plus. - 2190-5444. ; 138:8, s. 3-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The next years will see the completion of the radioactive ion beam facility SPES (Selective Production of Exotic Species) and the upgrade of the accelerators complex at Istituto Nazionale di Fisica Nucleare – Legnaro National Laboratories (LNL) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics, and applications. The nuclear physics community has organised a workshop to discuss the new physics opportunities that will be possible in the near future by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report.
  •  
2.
  • Brethouwer, Gert, et al. (författare)
  • Turbulent-laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces
  • 2012
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 704, s. 137-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct numerical simulations of subcritical rotating, stratified and magnetohydrodynamic wall-bounded flows are performed in large computational domains, focusing on parameters where laminar and turbulent flow can stably coexist. In most cases, a regime of large-scale oblique laminar-turbulent patterns is identified at the onset of transition, as in the case of pure shear flows. The current study indicates that this oblique regime can be shifted up to large values of the Reynolds number R e by increasing the damping by the Coriolis, buoyancy or Lorentz force. We show evidence for this phenomenon in three distinct flow cases: plane Couette flow with spanwise cyclonic rotation, plane magnetohydrodynamic channel flow with a spanwise or wall-normal magnetic field, and open channel flow under stable stratification. Near-wall turbulence structures inside the turbulent patterns are invariably found to scale in terms of viscous wall units as in the fully turbulent case, while the patterns themselves remain large-scale with a trend towards shorter wavelength for increasing Re. Two distinct regimes are identified: at low Reynolds numbers the patterns extend from one wall to the other, while at large Reynolds number they are confined to the near-wall regions and the patterns on both channel sides are uncorrelated, the core of the flow being highly turbulent without any dominant large-scale structure.
  •  
3.
  • Duguet, Y., et al. (författare)
  • Oblique laminar-turbulent interfaces in plane shear flows
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:3, s. 034502-
  • Tidskriftsartikel (refereegranskat)abstract
    • Localized structures such as turbulent stripes and turbulent spots are typical features of transitional wall-bounded flows in the subcritical regime. Based on an assumption for scale separation between large and small scales, we show analytically that the corresponding laminar-turbulent interfaces are always oblique with respect to the mean direction of the flow. In the case of plane Couette flow, the mismatch between the streamwise flow rates near the boundaries of the turbulence patch generates a large-scale flow with a nonzero spanwise component. Advection of the small-scale turbulent fluctuations (streaks) by the corresponding large-scale flow distorts the shape of the turbulence patch and is responsible for its oblique growth. This mechanism can be easily extended to other subcritical flows such as plane Poiseuille flow or Taylor-Couette flow.
  •  
4.
  • Khapko, Taras, et al. (författare)
  • Edge states as mediators of bypass transition in boundary-layer flows
  • 2016
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 801
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of edge states is investigated in the asymptotic suction boundary layer in relation to the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state plays the role of state-space mediator.
  •  
5.
  • Khapko, Taras, et al. (författare)
  • Fully localised edge states in boundary layers
  • 2015
  • Ingår i: Proceedings - 15th European Turbulence Conference, ETC 2015. - : TU Delft.
  • Konferensbidrag (refereegranskat)abstract
    • Investigation of the laminar–turbulent boundary is performed in a boundary-layer flow. Constant homogeneous suction is applied at the wall in order to prevent the spatial growth of the layer, leading to the parallel Asymptotic Suction Boundary Layer (ASBL). Edge tracking is performed in a large computational domain allowing for full spatial localisation of the structures on the laminar–turbulent separatrix. The obtained dynamics of the state goes through calm and bursting phases. During the latter the structure grows in size, shedding vortices downstream of its core which viscously decay during the calm phases. Comparison with the computation in spatially growing boundary layer is made. The influence of the Reynolds number and the path leading from the edge state to turbulent flow are considered. 
  •  
6.
  • Kreilos, T., et al. (författare)
  • Bypass transition in boundary layers as an activated process
  • 2015
  • Ingår i: Proceedings - 15th European Turbulence Conference, ETC 2015. - : TU Delft.
  • Konferensbidrag (refereegranskat)abstract
    • We consider the spatio-temporal aspects of the transition to turbulence in a boundary layer above a flat plate exposed to free-stream turbulence. Combining results from the receptivity to free-stream turbulence with the observation of a double threshold from transition studies in e.g. pipe flow we arrive at a physically motivated prediction for the spatial distribution of nucleation events in boundary layers. We use a cellular automaton to implement a complete model for the spatial and temporal evolution of turbulent patches and show that the model reproduces the statistical features of the boundary layer remarkably well. The success of the modeling shows that bypass transition occurs as a spatiotemporally activated process, where transition is triggered by critical fluctuations imported from the free-stream turbulence. 
  •  
7.
  • Kreilos, T., et al. (författare)
  • Turbulence transition in the asymptotic suction boundary layer
  • 2013
  • Ingår i: International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2013. - : TSFP-8. - 9780000000002
  • Konferensbidrag (refereegranskat)abstract
    • We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-Turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures localize in the spanwise direction, and the flow in the active region is similar to the one in small domains. There are still periodic bursts at which the flow structures are shifted, but the shift-distance is no longer connected to a discrete symmetry of the flow geometry. Two different states are found by edge tracking techniques, one where structures are shifted to the same side at every burst and one where they are alternatingly shifted to the left and to the right.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy