SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dumont Magali) "

Sökning: WFRF:(Dumont Magali)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deiana, Marco, et al. (författare)
  • A new G-quadruplex-specific photosensitizer inducing genome instability in cancer cells by triggering oxidative DNA damage and impeding replication fork progression
  • 2023
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 51:12, s. 6264-6285
  • Tidskriftsartikel (refereegranskat)abstract
    • Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.
  •  
2.
  • Dumont, Magali, et al. (författare)
  • Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:23, s. 5091-5105
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxisome proliferator-activated receptors (PPARs) are ligand-mediated transcription factors, which control both lipid and energy metabolism and inflammation pathways. PPAR agonists are effective in the treatment of metabolic diseases and, more recently, neurodegenerative diseases, in which they show promising neuroprotective effects. We studied the effects of the pan-PPAR agonist bezafibrate on tau pathology, inflammation, lipid metabolism and behavior in transgenic mice with the P301S human tau mutation, which causes familial frontotemporal lobar degeneration. Bezafibrate treatment significantly decreased tau hyperphosphorylation using AT8 staining and the number of MC1-positive neurons. Bezafibrate treatment also diminished microglial activation and expression of both inducible nitric oxide synthase and cyclooxygenase 2. Additionally, the drug differentially affected the brain and brown fat lipidome of control and P301S mice, preventing lipid vacuoles in brown fat. These effects were associated with behavioral improvement, as evidenced by reduced hyperactivity and disinhibition in the P301S mice. Bezafibrate therefore exerts neuroprotective effects in a mouse model of tauopathy, as shown by decreased tau pathology and behavioral improvement. Since bezafibrate was given to the mice before tau pathology had developed, our data suggest that bezafibrate exerts a preventive effect on both tau pathology and its behavioral consequences. Bezafibrate is therefore a promising agent for the treatment of neurodegenerative diseases associated with tau pathology.
  •  
3.
  • Robroek, Bjorn J. M., et al. (författare)
  • Rewiring of peatland plant–microbe networks outpaces species turnover
  • 2021
  • Ingår i: Oikos. - : Wiley-Blackwell Publishing Inc.. - 0030-1299 .- 1600-0706. ; 130:3, s. 339-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Enviro‐climatic changes are thought to be causing alterations in ecosystem processes through shifts in plant and microbial communities; however, how links between plant and microbial communities change with enviro–climatic change is likely to be less straightforward but may be fundamental for many ecological processes. To address this, we assessed the composition of the plant community and the prokaryotic community – using amplicon‐based sequencing – of three European peatlands that were distinct in enviro–climatic conditions. Bipartite networks were used to construct site‐specific plant–prokaryote co‐occurrence networks. Our data show that between sites, plant and prokaryotic communities differ and that turnover in interactions between the communities was complex. Essentially, turnover in plant–microbial interactions is much faster than turnover in the respective communities. Our findings suggest that network rewiring does largely result from novel or different interactions between species common to all realised networks. Hence, turnover in network composition is largely driven by the establishment of new interactions between a core community of plants and microorganisms that are shared among all sites. Taken together our results indicate that plant–microbe associations are context dependent, and that changes in enviro–climatic conditions will likely lead to network rewiring. Integrating turnover in plant–microbe interactions into studies that assess the impact of enviro–climatic change on peatland ecosystems is essential to understand ecosystem dynamics and must be combined with studies on the impact of these changes on ecosystem processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy