SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duncan Pamela) "

Sökning: WFRF:(Duncan Pamela)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brainin, Michael, et al. (författare)
  • Poststroke chronic disease management: towards improved identification and interventions for poststroke spasticity-related complications.
  • 2011
  • Ingår i: International journal of stroke : official journal of the International Stroke Society. - : SAGE Publications. - 1747-4949 .- 1747-4930. ; 6:1, s. 42-6
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper represents the opinion of a group of researchers and clinicians with an established interest in poststroke care and is based on the recognised need for long-term care following stroke, especially in view of the global increase of disability due to stroke. Among the more frequent long-term complications following stroke are spasticity-related disabilities. Although spasticity alone occurs in up to 60% of stroke survivors, disabling spasticity affects only 4-10%. Spasticity further interferes with important functions of daily life when it occurs in association with pain, motor impairment, and overall declines of cognitive and neurological function. It is proposed that the aftermath of stroke be considered a chronic disease requiring a multifactorial and multilevel approach. There are, however, knowledge gaps related to the prediction and recognition of poststroke disability. Interventions to prevent or minimise such disabilities require further development and evaluation. Poststroke spasticity research should focus on reducing disability and be considered as part of a continuum of chronic care requirements and should be recognised as a part of a comprehensive poststroke disease management programme.
  •  
3.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: Working Toward a Prioritized World Agenda
  • 2010
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 41:6, s. 1084-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods-Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results-Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent "silo" mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a "Brain Health" concept that enables promotion of preventive measures. Conclusions-To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
4.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: Working toward a Prioritized World Agenda
  • 2010
  • Ingår i: Cerebrovascular Diseases. - : S. Karger AG. - 1421-9786 .- 1015-9770. ; 30:2, s. 127-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods: Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results: Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (e. g., social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions: To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress. Copyright (C) 2010 American Heart Association. Inc., S. Karger AG, Basel, and John Wiley & Sons, Inc.
  •  
5.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: working toward a prioritized world agenda
  • 2010
  • Ingår i: International Journal of Stroke. - : SAGE Publications. - 1747-4949 .- 1747-4930. ; 5:4, s. 238-256
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background and Purpose The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods Preliminary work was performed by seven working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
6.
  •  
7.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
8.
  • Pettersson-Kymmer, Ulrika, et al. (författare)
  • HLA and KIR Associations of Cervical Neoplasia
  • 2018
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 218:12, s. 2006-2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cervical cancer is the fourth most common cancer in women, and we recently reported human leukocyte antigen (HLA) alleles showing strong associations with cervical neoplasia risk and protection. HLA ligands are recognised by killer immunoglobulin-like receptors (KIRs) expressed on a range of immune cell subsets, governing their proinflammatory activity. We hypothesized that the inheritance of particular HLA-KIR combinations would increase cervical neoplasia risk.Methods: Here, we used HLA and KIR dosages imputed from SNP genotype data from 2,143 cervical neoplasia cases and 13,858 healthy controls of European decent.Results: Four novel HLA alleles were identified in association with cervical neoplasia: HLA-DRB3*9901 (OR=1.24, P=2.49×10-9), HLA-DRB5*0101 (OR=1.29, P=2.26×10-8), HLA-DRB5*9901 (OR=0.77, P=1.90×10-9) and HLA-DRB3*0301 (OR=0.63, P=4.06×10-5), due to their linkage disequilibrium with known cervical neoplasia-associated HLA-DRB1 alleles. We also found homozygosity of HLA-C1 group alleles is a protective factor for HPV16-related cervical neoplasia (C1/C1, OR=0.79, P=0.005). This protective association was restricted to carriers of either KIR2DL2 (OR=0.67, P=0.00045) or KIR2DS2 (OR=0.69, P=0.0006).Conclusions: Our findings suggest that HLA-C1 group alleles play a role in protecting against HPV16-related cervical neoplasia, mainly through a KIR-mediated mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Norrving, Bo (4)
Cramer, Steven C. (4)
Brainin, Michael (4)
Goldstein, Larry B (4)
Donnan, Geoffrey A (4)
Buchan, Alastair M. (4)
visa fler...
Kaste, Markku (3)
Hankey, Graeme J. (3)
Rothwell, Peter M. (3)
Kivipelto, Miia (3)
Hacke, Werner (3)
Ford, Gary A. (3)
Wahlgren, Nils (3)
Tuomilehto, Jaakko (3)
Kalra, Lalit (3)
Furie, Karen L. (3)
Sacco, Ralph L. (3)
Leys, Didier (3)
Bayley, Mark (3)
Fisher, Marc (3)
Martins, Sheila C.O. (3)
Hachinski, Vladimir (3)
Davis, Stephen M. (3)
Schwamm, Lee H (3)
Jones, Theresa A. (3)
Skvortsova, Veronika (3)
Gorelick, Philip B. (3)
Bornstein, Natan M (3)
Shinohara, Yukito (3)
Iadecola, Costantino (3)
Lo, Eng H. (3)
Skolnick, Brett E. (3)
Morris, John (3)
Smith, Sidney C., Jr ... (3)
Wang, Yulun (3)
Bryer, Alan (3)
Saver, Jeff (3)
Bednar, Martin M. (3)
Duncan, Pamela (3)
Enney, Lori (3)
Finklestein, Seth (3)
Kleim, Jeff (3)
Nitkin, Ralph (3)
Teasell, Robert (3)
Weiller, Cornelius (3)
Desai, Bhupat (3)
Goldberg, Mark P. (3)
Heiss, Wolf-Dieter (3)
Saarelma, Osmo (3)
Trivedi, Bhargava (3)
visa färre...
Lärosäte
Lunds universitet (7)
Karolinska Institutet (6)
Göteborgs universitet (4)
Umeå universitet (2)
Linköpings universitet (2)
Sveriges Lantbruksuniversitet (2)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy