SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dunkley Daniel J.) "

Sökning: WFRF:(Dunkley Daniel J.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ade, Peter, et al. (författare)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
2.
  • Inglis, Gordon N., et al. (författare)
  • Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest Paleocene
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1953-1968
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (similar to 57 to 48 million years ago) span a wide range (similar to 9 to 23 degrees C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimen- tal framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (similar to 57 Ma), (2) the Paleocene-Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66% confidence) during the latest Paleocene, PETM, and EECO was 26.3 degrees C (22.3 to 28.3 degrees C), 31.6 degrees C (27.2 to 34.5 degrees C), and 27.0 degrees C (23.2 to 29.7 degrees C), respectively. GMST estimates from the EECO are similar to 10 to 16 degrees C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 degrees C higher than pre-industrial). Leveraging the large signal associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that bulk equilibrium climate sensitivity (ECS; 66% confidence) during the latest Paleocene, PETM, and EECO is 4.5 degrees C (2.4 to 6.8 degrees C), 3.6 degrees C (2.3 to 4.7 degrees C), and 3.1 degrees C (1.8 to 4.4 degrees C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ffiC per doubling CO2) but appear incompatible with low ECS values (< 1 :5 per doubling CO2).
  •  
3.
  • Lunt, Daniel J., et al. (författare)
  • DeepMIP : model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:1, s. 203-227
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, similar to 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org , last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 degrees C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model-data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.
  •  
4.
  • Dunkley, Daniel J., et al. (författare)
  • Two Neoarchean tectonothermal events on the western edge of the North Atlantic Craton, as revealed by SIMS dating of the Saglek Block, Nain Province, Labrador
  • 2020
  • Ingår i: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 177:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saglek Block forms the northern part of the Nain Province and underwent widespread metamorphism at c. 2.7 Ga, producing the dominant gneissosity and intercalation of supracrustal sequences. Zircon dating of gneiss samples collected along 80 km of the Labrador coast from Ramah Bay in the north to Hebron Fjord in the south confirms the widespread extent of high-grade metamorphism between 2750 and 2700 Ma. In addition, a distinct event between 2550 and 2510 Ma produced felsic melt with peritectic garnet in metavolcanic gneiss and granoblastic recrystallization in mafic granulite. Ductile deformation of granite emplaced at c. 2550 Ma indicates that this later event involved a degree of tectonism during high-T metamorphism. Such tectonism may be related to a hypothesized post-2.7 Ga juxtaposition of the predominantly Eoarchean Saglek Block against the Mesoarchean Hopedale Block, along a north–south boundary that extends from the coast near Nain to offshore of Saglek Bay. Evidence of reworking of c. 2.7 Ga gneisses by c. 2.5 Ga tectonothermal activity has been found elsewhere on the margins of the North Atlantic Craton, of which the Nain Province represents the western margin. In particular, a recent suggestion that c. 2.5 Ga metamorphic ages along the northern margin of the North Atlantic Craton in SW Greenland may record the final assembly of the craton could also apply to the western margin as represented by the rocks of the Nain Province.Supplementary material: Plots and geochemical data are available at https://doi.org/10.6084/m9.figshare.c.4567934
  •  
5.
  •  
6.
  • Kusiak, Monika A., et al. (författare)
  • Peak to post-peak thermal history of the Saglek Block of Labrador : A multiphase and multi-instrumental approach to geochronology
  • 2018
  • Ingår i: Chemical Geology. - 0009-2541 .- 1872-6836. ; 484, s. 210-223
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saglek Block of coastal Labrador forms the western margin of the North Atlantic Craton, where Archean gneisses and granulites have been reworked during the Paleoproterozoic. Previous work has established that the block is a composite of Eoarchean to Mesoarchean protoliths metamorphosed to upper amphibolite and granulite facies at around 2.8–2.7Ga. New in-situ microbeam dating of accessory minerals in granoblastic gneisses reveals a complex peak to post-peak thermal history. Zircon growth at ca. 3.7–3.6Ga provides the age of formation of the tonalitic protoliths to the gneisses. Further zircon growth in syn-tectonic granitic gneiss and monazite growth in a variety of orthogneisses confirm peak metamorphic conditions at ca. 2.7Ga, but also reveal high-temperature conditions at ca. 2.6Ga and 2.5Ga. The former is interpreted as the waning stages of the 2.7Ga granulite event, whereas the latter is associated with a younger phase of granitic magmatism. In addition, apatite ages of ca. 2.2Ga may represent either cooling associated with the 2.5Ga event or a previously unrecognized greenschist-facies metamorphism event that predates the Torngat Orogeny.
  •  
7.
  • Lyon, Ian C., et al. (författare)
  • Pb nanospheres in ancient zircon yield model ages for zircon formation and Pb mobilization
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanospheres of lead (Pb) have recently been identified in zircon (ZrSiO4) with the potential to compromise the veracity of U-Pb age determinations. The key assumption that the determined age is robust against the effects of Pb mobility, as long as Pb is not lost from the zircon during subsequent geological events, is now in question. To determine the effect of nanosphere formation on age determination, and whether analysis of nanospheres can yield additional information about the timing of both zircon growth and nanosphere formation, zircons from the Napier Complex in Enderby Land, East Antarctica, were investigated by high-spatial resolution NanoSIMS (Secondary Ion Mass Spectrometry) mapping. Conventional SIMS analyses with >µm resolution potentially mixes Pb from multiple nanospheres with the zircon host, yielding variable average values and therefore unreliable ages. NanoSIMS analyses were obtained of 207Pb/206Pb in nanospheres a few nanometres in diameter that were resolved from 207Pb/206Pb measurements in the zircon host. We demonstrate that analysis for 207Pb/206Pb in multiple individual Pb nanospheres, along with separate analysis of 207Pb/206Pb in the zircon host, can not only accurately yield the age of zircon crystallization, but also the time of nanosphere formation resulting from Pb mobilization during metamorphism. Model ages for both events can be derived that are correlated due to the limited range of possible solutions that can be satisfied by the measured 207Pb/206Pb ratios of nanospheres and zircon host. For the Napier Complex zircons, this yields a model age of ca 3110 Ma for zircon formation and a late Archean model age of 2610 Ma for the metamorphism that produced the nanospheres. The Nanosphere Model Age (NMA) method constrains both the crystallization age and age of the metamorphism to ~±135 Ma, a significant improvement on errors derived from counting statistics.
  •  
8.
  • Pälike, Heiko, et al. (författare)
  • A Cenozoic record of the equatorial Pacific carbonate compensation depth
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 488:7413, s. 609-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.
  •  
9.
  • Sałacińska, Anna, et al. (författare)
  • Complexity of the early Archean Uivak Gneiss : Insights from Tigigakyuk Inlet, Saglek Block, Labrador, Canada and possible correlations with south West Greenland
  • 2018
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 315, s. 103-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saglek Block of Labrador comprises Eoarchean to Neoarchean lithologies, metamorphosed at high temperature at ca. 2.7 Ga. Here, we investigate the gneisses of Tigigakyuk Inlet, previously identified as the locality exposing the most ancient rocks in the Saglek Block. New geochronological and geochemical results reveal a multistage history. Precise magmatic emplacement ages of 3.75 to 3.71 Ga refine the age of the Uivak Gneiss. Zircon rims and neoblastic grains with low Th/U record metamorphism at ca. 3.6 and 2.8-2.7 Ga. Magmatism between these tectono-metamorphic events is recorded by the presence of meta-mafic dykes in the gneisses, gabbroic enclaves in ca. 2.7 Ga syn-tectonic granitoids, as well as by a ca. 3.56 Ga age for monzonitic gneiss in which metamorphic zircon is present as xenocrysts. Felsic (TTG) magmatism between ca. 3.75 Ga and 3.71 Ga, as well as metamorphism at both ca. 3.6 Ga and 2.8-2.7 Ga, is also recognised in the Itsaq Gneiss Complex of south West Greenland, and is restricted to the Færingehavn Terrane. Our new data enable a more rigorous correlation between these formerly conjugate parts of the North Atlantic Craton.
  •  
10.
  • Sałacińska, Anna, et al. (författare)
  • Gneiss-forming events in the Saglek Block, Labrador; a reappraisal of the Uivak gneiss
  • 2019
  • Ingår i: International journal of earth sciences. - : Springer Science and Business Media LLC. - 1437-3254 .- 1437-3262. ; 108:3, s. 753-778
  • Tidskriftsartikel (refereegranskat)abstract
    • The Archean gneiss complex of the Saglek Block of Labrador is a part of the North Atlantic Craton, and is correlated with southern West Greenland, both being metamorphosed during a ca. 2.7 Ga event. The main component of the complex is the Eoarchean Uivak orthogneiss, which includes lenses of the Nulliak supracrustal assemblage. Both lithologies are cut by the mafic Saglek metadykes. The Uivak gneisses have been divided into Uivak I grey gneiss and Uivak II augen gneiss. The former underwent ca. 3.6 Ga high-T metamorphism prior to the intrusion of the latter. However, the exact age, nature, and extent of Uivak II gneiss are poorly understood. We present geochemical and geochronological results for both these orthogneisses to help refine the various hypotheses that have been proposed concerning the nature of their protoliths. Magmatic ages of 3746 ± 5 and 3717 ± 6 Ma are consistent with previous estimates for the age of Uivak I gneiss. Uivak II augen gneiss from Maidmonts Island, where there is a clear intrusive relationship between the Uivak II and Uivak I gneissic protoliths, has an age of 3325 ± 3 Ma. This is similar to an homogeneous grey gneiss from St. John’s Harbour, with an age of 3318 ± 5 Ma. Grey gneiss from Big Island is distinctively younger (3219 ± 7 Ma), and equivalent to the ca. 3.24 Ga Lister gneiss. Our study shows that granitic gneisses classified as Uivak II were emplaced 200–300 million years after ca. 3.6 Ga metamorphism and deformation of the Uivak I gneiss. The igneous protolith of Uivak II gneiss pre-dates the Lister gneiss by about 100 Ma. The Uivak I and Lister gneisses are geochemically similar, and are both Tonalite–Trondhjemite–Granodiorite (TTG) gneisses, whereas the Uivak II gneiss is a granitoid partially derived from pre-existing crust. We propose abandoning the term ‘Uivak II gneiss’, and renaming ca. 3.3 Ga granitoids, after the type locality, as Maidmonts gneiss. This restricts the term ‘Uivak gneiss’ to Eoarchean TTG gneisses and removes the necessity for subdividing them into Uivak I and II.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy