SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duplessis Sebastien) "

Sökning: WFRF:(Duplessis Sebastien)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Plomion, Christophe, et al. (författare)
  • Oak genome reveals facets of long lifespan
  • 2018
  • Ingår i: NATURE PLANTS. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 4:7, s. 440-452
  • Tidskriftsartikel (refereegranskat)abstract
    • Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes' but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times(2). With 450 species spread throughout Asia, Europe and America(3), oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical(4) and modelling(5) approaches have shown that intra-organismal genetic heterogeneity can be selected for(6) and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes(7). However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.
  •  
2.
  • Martin, Francis, et al. (författare)
  • The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 452:7183, s. 7-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycorrhizal symbioses -- the union of roots and soil fungi -- are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate, and montane forests all depend upon ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of 2 ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here, we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-million-base genome assembly contains ~ 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features most notably a battery of effector-type small secreted proteins (SSP) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific proteins likely play a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell walls, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus which enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem in order to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy