SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dutoit Ludovic) "

Sökning: WFRF:(Dutoit Ludovic)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolivar, Paulina, et al. (författare)
  • Biased Inference of Selection Due to GC-Biased Gene Conversion and the Rate of Protein Evolution in Flycatchers When Accounting for It
  • 2018
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 35:10, s. 2475-2486
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of recombination impacts on rates of protein evolution for at least two reasons: it affects the efficacy of selection due to linkage and influences sequence evolution through the process of GC-biased gene conversion (gBGC). We studied how recombination, via gBGC, affects inferences of selection in gene sequences using comparative genomic and population genomic data from the collared flycatcher (Ficedula albicollis). We separately analyzed different mutation categories ("strong"-to-"weak" "weak-to-strong," and GC-conservative changes) and found that gBGC impacts on the distribution of fitness effects of new mutations, and leads to that the rate of adaptive evolution and the proportion of adaptive mutations among nonsynonymous substitutions are underestimated by 22-33%. It also biases inferences of demographic history based on the site frequency spectrum. In light of this impact, we suggest that inferences of selection (and demography) in lineages with pronounced gBGC should be based on GC-conservative changes only. Doing so, we estimate that 10% of nonsynonymous mutations are effectively neutral and that 27% of nonsynonymous substitutions have been fixed by positive selection in the flycatcher lineage. We also find that gene expression level, sex-bias in expression, and the number of protein-protein interactions, but not Hill-Robertson interference (HRI), are strong determinants of selective constraint and rate of adaptation of collared flycatcher genes. This study therefore illustrates the importance of disentangling the effects of different evolutionary forces and genetic factors in interpretation of sequence data, and from that infer the role of natural selection in DNA sequence evolution.
  •  
2.
  • Burri, Reto, et al. (författare)
  • Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers
  • 2015
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 25:11, s. 1656-1665
  • Tidskriftsartikel (refereegranskat)abstract
    • Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation ("differentiation islands") widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (d(XY) relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.
  •  
3.
  • Connallon, Tim, et al. (författare)
  • Local adaptation and the evolution of inversions on sex chromosomes and autosomes
  • 2018
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 373:1757
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatially varying selection with gene flow can favour the evolution of inversions that bind locally adapted alleles together, facilitate local adaptation and ultimately drive genomic divergence between species. Several studies have shown that the rates of spread and establishment of new inversions capturing locally adaptive alleles depend on a suite of evolutionary factors, including the strength of selection for local adaptation, rates of gene flow and recombination, and the deleterious mutation load carried by inversions. Because the balance of these factors is expected to differ between X (or Z) chromosomes and autosomes, opportunities for inversion evolution are likely to systematically differ between these genomic regions, though such scenarios have not been formally modelled. Here, we consider the evolutionary dynamics of X-linked and autosomal inversions in populations evolving at a balance between migration and local selection. We identify three factors that lead to asymmetric rates of X-linked and autosome inversion establishment: (1) sex-biased migration, (2) dominance of locally adapted alleles and (3) chromosome-specific deleterious mutation loads. This theory predicts an elevated rate of fixation, and depressed opportunities for polymorphism, for X-linked inversions. Our survey of data on the genomic distribution of polymorphic and fixed inversions supports both theoretical predictions. This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
  •  
4.
  •  
5.
  • Dutoit, Ludovic, et al. (författare)
  • Covariation in levels of nucleotide diversity in homologous regions of the avian genome long after completion of lineage sorting
  • 2017
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : ROYAL SOC. - 0962-8452 .- 1471-2954. ; 284:1849
  • Tidskriftsartikel (refereegranskat)abstract
    • Closely related species may show similar levels of genetic diversity in homologous regions of the genome owing to shared ancestral variation still segregating in the extant species. However, after completion of lineage sorting, such covariation is not necessarily expected. On the other hand, if the processes that govern genetic diversity are conserved, diversity may potentially covary even among distantly related species. We mapped regions of conserved synteny between the genomes of two divergent bird speciescollared flycatcher and hooded crow-and identified more than 600 Mb of homologous regions (66% of the genome). From analyses of whole-genome resequencing data in large population samples of both species we found nucleotide diversity in 200 kb windows to be well correlated (Spearman's rho = 0.407). The correlation remained highly similar after excluding coding sequences. To explain this covariation, we suggest that a stable avian karyotype and a conserved landscape of recombination rate variation render the diversity-reducing effects of linked selection similar in divergent bird lineages. Principal component regression analysis of several potential explanatory variables driving heterogeneity in flycatcher diversity levels revealed the strongest effects from recombination rate variation and density of coding sequence targets for selection, consistent with linked selection. It is also possible that a stable karyotype is associated with a conserved genomic mutation environment contributing to covariation in diversity levels between lineages. Our observations imply that genetic diversity is to some extent predictable.
  •  
6.
  • Dutoit, Ludovic (författare)
  • Determinants of genomic diversity in the collared flycatcher (Ficedula albicollis)
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Individuals vary from each other in their genetic content. Genetic diversity is at the core of the evolutionary theory. Rooted in a solid theoretical framework developed as early as the 1930s, current empirical observations of genomic diversity became possible due to technological advances. These measurements, originally based on a few gene sequences from several individuals, are becoming possible at the genome scale for entire populations. We can now explore how evolutionary forces shape diversity levels along different parts of the genome. In this thesis, I focus on the variation in levels of diversity within genomes using avian systems and in particular that of the collared flycatcher (Ficedula albicollis). First, I describe the variation in genetic diversity along the genome of the collared flycatcher and compare it to the amount of variation in diversity across individuals within the population. I provide guidelines on how a small number of makers can capture the extent of variability in a population. Second, I investigate the stability of the local levels of diversity in the genome across evolutionary time scales by comparing collared flycatcher to the hooded crow (Corvus (corone) corone). Third, I study how selection can maintain variation through pervasive evolutionary conflict between sexes. Lastly, I explore how shifts in genome-wide variant frequencies across few generations can be utilised to estimate the effective size of population.
  •  
7.
  • Dutoit, Ludovic, et al. (författare)
  • Estimation of contemporary effect population size in an island population of the collared flycatcher (Ficedula albicollis) using large-scale genome data
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Due to its central importance to many aspects of evolutionary biology and population genetics, the long-term effective population size (Ne) has been estimated for numerous species and populations. However, estimating contemporary Ne is difficult and in practice this parameter is often not known. In principle, contemporary Ne can be estimated using either analyses of temporal changes in allele frequencies or the extent of linkage disequilibrium (LD) between unlinked markers. We applied these approaches for contemporary Ne estimation of a relatively recently founded island population of collared flycatchers (Ficedula albicollis). We sequenced the genomes of 85 birds sampled in 1993 and 2015, and used a method of Jorde & Ryman (2007) to estimate Ne to ≈5,000 based on the amount of genetic drift observed between the two cohorts. This corresponds to an effective size/census size (Ne/Nc) ratio of ≈0.5. An approach based on LD applied to each cohort could not separate from Ne infinity. When individuals from the two cohorts were pooled, Ne was estimated to 10,000-25,000, but these estimates may be sensitive to biases. We conclude that whole-genome sequence data offer new possibilities for estimation of contemporary Ne, but also note that such estimation remains difficult. 
  •  
8.
  • Dutoit, Ludovic, et al. (författare)
  • Genomic distribution and estimation of nucleotide diversity in natural populations : perspectives from the collared flycatcher (Ficedula albicollis) genome
  • 2017
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 17:4, s. 586-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Properly estimating genetic diversity in populations of nonmodel species requires a basic understanding of how diversity is distributed across the genome and among individuals. To this end, we analysed whole-genome resequencing data from 20 collared flycatchers (genome size approximate to 1.1 Gb; 10.13 million single nucleotide polymorphisms detected). Genomewide nucleotide diversity was almost identical among individuals (mean = 0.00394, range = 0.00384-0.00401), but diversity levels varied extensively across the genome (95% confidence interval for 200-kb windows = 0.0013-0.0053). Diversity was related to selective constraint such that in comparison with intergenic DNA, diversity at fourfold degenerate sites was reduced to 85%, 3' UTRs to 82%, 5' UTRs to 70% and nondegenerate sites to 12%. There was a strong positive correlation between diversity and chromosome size, probably driven by a higher density of targets for selection on smaller chromosomes increasing the diversity-reducing effect of linked selection. Simulations exploring the ability of sequence data from a small number of genetic markers to capture the observed diversity clearly demonstrated that diversity estimation from finite sampling of such data is bound to be associated with large confidence intervals. Nevertheless, we show that precision in diversity estimation in large out-bred population benefits from increasing the number of loci rather than the number of individuals. Simulations mimicking RAD sequencing showed that this approach gives accurate estimates of genomewide diversity. Based on the patterns of observed diversity and the performed simulations, we provide broad recommendations for how genetic diversity should be estimated in natural populations.
  •  
9.
  • Dutoit, Ludovic, et al. (författare)
  • Sex-biased gene expression, sexual antagonism and levels of genetic diversity in the collared flycatcher (Ficedula albicollis) genome
  • 2018
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 27:18, s. 3572-3581
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Theoretical work suggests that sexual conflict should promote the maintenance of genetic diversity by the opposing directions of selection on sexually antagonistic mutations in males and females. This prediction, so far not been empirically tested on a genome-wide scale, could potentially contribute towards genomic heterogeneity in levels of genetic diversity. We used large-scale population genomic and transcriptomic data from the collared flycatcher (Ficedula albicollis) to analyse how sex-biased gene expression – one outcome of sexual conflict – relates to genetic variability. Here, we demonstrate that the extent of sex-biased gene expression of both male-biased and female-biased genes is significantly correlated with levels of nucleotide diversity in gene sequences and that this correlation extends to the overall levels of genomic diversity. We find evidence for balancing selection in sex-biased genes, suggesting that sex-biased gene expression could be seen as a component counteracting the diversity-reducing effects of linked positive and purifying selection. The observation of significant genetic differentiation between males and females for male-biased genes indicates ongoing sexual conflict and sex-specific viability selection, potentially driven by sexual selection. Our results thus provide a new perspective on the long-standing question in evolutionary biology of how genomes can remain so genetically variable in face of strong natural and sexual selection.
  •  
10.
  • Foster, Yasmin, et al. (författare)
  • Genomic signatures of inbreeding in a critically endangered parrot, the kākāpō
  • 2021
  • Ingår i: G3. - : Oxford University Press (OUP). - 2160-1836. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Events of inbreeding are inevitable in critically endangered species. Reduced population sizes and unique life-history traits can increase the severity of inbreeding, leading to declines in fitness and increased risk of extinction. Here, we investigate levels of inbreeding in a critically endangered flightless parrot, the kākāpō (Strigops habroptilus), wherein a highly inbred island population and one individual from the mainland of New Zealand founded the entire extant population. Genotyping-by-sequencing (GBS), and a genotype calling approach using a chromosome-level genome assembly, identified a filtered set of 12,241 single-nucleotide polymorphisms (SNPs) among 161 kākāpō, which together encompass the total genetic potential of the extant population. Multiple molecular-based estimates of inbreeding were compared, including genome-wide estimates of heterozygosity (FH), the diagonal elements of a genomic-relatedness matrix (FGRM), and runs of homozygosity (RoH, FRoH). In addition, we compared levels of inbreeding in chicks from a recent breeding season to examine if inbreeding is associated with offspring survival. The density of SNPs generated with GBS was sufficient to identify chromosomes that were largely homozygous with RoH distributed in similar patterns to other inbred species. Measures of inbreeding were largely correlated and differed significantly between descendants of the two founding populations. However, neither inbreeding nor ancestry was found to be associated with reduced survivorship in chicks, owing to unexpected mortality in chicks exhibiting low levels of inbreeding. Our study highlights important considerations for estimating inbreeding in critically endangered species, such as the impacts of small population sizes and admixture between diverse lineages.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy