SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duzel Emrah) "

Sökning: WFRF:(Duzel Emrah)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maass, Anne, et al. (författare)
  • Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults
  • 2016
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 131, s. 142-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77 years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.
  •  
2.
  • Bainbridge, Wilma A., et al. (författare)
  • Memorability of photographs in subjective cognitive decline and mild cognitive impairment : Implications for cognitive assessment
  • 2019
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 11, s. 610-618
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Impaired long-term memory is a defining feature of mild cognitive impairment (MCI). We tested whether this impairment is item specific, limited to some memoranda, whereas some remain consistently memorable. Methods: We conducted item-based analyses of long-term visual recognition memory. Three hundred ninety-four participants (healthy controls, subjective cognitive decline [SCD], and MCI) in the multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) were tested with images from a pool of 835 photographs. Results: We observed consistent memorability for images in healthy controls, SCD, and MCI, predictable by a neural network trained on another healthy sample. Looking at memorability differences between groups, we identified images that could successfully categorize group membership with higher success and a substantial image reduction than the original image set. Discussion: Individuals with SCD and MCI show consistent memorability for specific items, while other items show significant diagnosticity. Certain stimulus features could optimize diagnostic assessment, while others could support memory.
  •  
3.
  • Baumeister, Hannah, et al. (författare)
  • A generalizable data-driven model of atrophy heterogeneity and progression in memory clinic settings
  • Ingår i: Brain : a journal of neurology. - 1460-2156. ; 147:7, s. 2400-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.
  •  
4.
  • Berron, David, et al. (författare)
  • A remote digital memory composite to detect cognitive impairment in memory clinic samples in unsupervised settings using mobile devices
  • 2024
  • Ingår i: npj Digital Medicine. - 2398-6352. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote monitoring of cognition holds the promise to facilitate case-finding in clinical care and the individual detection of cognitive impairment in clinical and research settings. In the context of Alzheimer’s disease, this is particularly relevant for patients who seek medical advice due to memory problems. Here, we develop a remote digital memory composite (RDMC) score from an unsupervised remote cognitive assessment battery focused on episodic memory and long-term recall and assess its construct validity, retest reliability, and diagnostic accuracy when predicting MCI-grade impairment in a memory clinic sample and healthy controls. A total of 199 participants were recruited from three cohorts and included as healthy controls (n = 97), individuals with subjective cognitive decline (n = 59), or patients with mild cognitive impairment (n = 43). Participants performed cognitive assessments in a fully remote and unsupervised setting via a smartphone app. The derived RDMC score is significantly correlated with the PACC5 score across participants and demonstrates good retest reliability. Diagnostic accuracy for discriminating memory impairment from no impairment is high (cross-validated AUC = 0.83, 95% CI [0.66, 0.99]) with a sensitivity of 0.82 and a specificity of 0.72. Thus, unsupervised remote cognitive assessments implemented in the neotiv digital platform show good discrimination between cognitively impaired and unimpaired individuals, further demonstrating that it is feasible to complement the neuropsychological assessment of episodic memory with unsupervised and remote assessments on mobile devices. This contributes to recent efforts to implement remote assessment of episodic memory for case-finding and monitoring in large research studies and clinical care.
  •  
5.
  • Berron, David, et al. (författare)
  • Higher CSF Tau Levels Are Related to Hippocampal Hyperactivity and Object Mnemonic Discrimination in Older Adults
  • 2019
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 39:44, s. 8788-8797
  • Tidskriftsartikel (refereegranskat)abstract
    • Mnemonic discrimination, the ability to distinguish similar events in memory, relies on subregions in the human medial temporal lobes (MTLs). Tau pathology is frequently found within the MTL of older adults and therefore likely to affect mnemonic discrimination, even in healthy older individuals. The MTL subregions that are known to be affected early by tau pathology, the perirhinal-transentorhinal region (area 35) and the anterior-lateral entorhinal cortex (alEC), have recently been implicated in the mnemonic discrimination of objects rather than scenes. Here we used an object-scene mnemonic discrimination task in combination with fMRI recordings and analyzed the relationship between subregional MTL activity, memory performance, and levels of total and phosphorylated tau as well as Aβ42/40 ratio in CSF. We show that activity in alEC was associated with mnemonic discrimination of similar objects but not scenes in male and female cognitively unimpaired older adults. Importantly, CSF tau levels were associated with increased fMRI activity in the hippocampus, and both increased hippocampal activity as well as tau levels were associated with mnemonic discrimination of objects, but again not scenes. This suggests that dysfunction of the alEC-hippocampus object mnemonic discrimination network might be a marker for tau-related cognitive decline.SIGNIFICANCE STATEMENT Subregions in the human medial temporal lobe are critically involved in episodic memory and, at the same time, affected by tau pathology. Impaired object mnemonic discrimination performance as well as aberrant activity within the entorhinal-hippocampal circuitry have been reported in earlier studies involving older individuals, but it has thus far remained elusive whether and how tau pathology is implicated in this specific impairment. Using task-related fMRI in combination with measures of tau pathology in CSF, we show that measures of tau pathology are associated with increased hippocampal activity and reduced mnemonic discrimination of similar objects but not scenes. This suggests that object mnemonic discrimination tasks could be promising markers for tau-related cognitive decline.
  •  
6.
  • De Guio, François, et al. (författare)
  • Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease
  • 2016
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - 0271-678X. ; 36:8, s. 1319-1337
  • Forskningsöversikt (refereegranskat)abstract
    • Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these small vessel disease markers has received little attention despite being widely used in cross-sectional and longitudinal studies. This review focuses on the main small vessel disease-related markers on magnetic resonance imaging including: white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and brain volume. The aim is to summarize, for each marker, what is currently known about: (1) its reproducibility in studies with a scan-rescan procedure either in single or multicenter settings; (2) the acquisition-related sources of variability; and, (3) the techniques used to minimize this variability. Based on the results, we discuss technical and other challenges that need to be overcome in order for these markers to be reliably used as outcome measures in future clinical trials. We also highlight the key points that need to be considered when designing multicenter magnetic resonance imaging studies of small vessel disease.
  •  
7.
  • Dichgans, Martin, et al. (författare)
  • METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration : An initiative of the Joint Programme for Neurodegenerative Disease Research
  • 2016
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 12:12, s. 1235-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Dementia is a global problem and major target for health care providers. Although up to 45% of cases are primarily or partly due to cerebrovascular disease, little is known of these mechanisms or treatments because most dementia research still focuses on pure Alzheimer's disease. An improved understanding of the vascular contributions to neurodegeneration and dementia, particularly by small vessel disease, is hampered by imprecise data, including the incidence and prevalence of symptomatic and clinically “silent” cerebrovascular disease, long-term outcomes (cognitive, stroke, or functional), and risk factors. New large collaborative studies with long follow-up are expensive and time consuming, yet substantial data to advance the field are available. In an initiative funded by the Joint Programme for Neurodegenerative Disease Research, 55 international experts surveyed and assessed available data, starting with European cohorts, to promote data sharing to advance understanding of how vascular disease affects brain structure and function, optimize methods for cerebrovascular disease in neurodegeneration research, and focus future research on gaps in knowledge. Here, we summarize the results and recommendations from this initiative. We identified data from over 90 studies, including over 660,000 participants, many being additional to neurodegeneration data initiatives. The enthusiastic response means that cohorts from North America, Australasia, and the Asia Pacific Region are included, creating a truly global, collaborative, data sharing platform, linked to major national dementia initiatives. Furthermore, the revised World Health Organization International Classification of Diseases version 11 should facilitate recognition of vascular-related brain damage by creating one category for all cerebrovascular disease presentations and thus accelerate identification of targets for dementia prevention.
  •  
8.
  • Diers, Kersten, et al. (författare)
  • An automated, geometry-based method for hippocampal shape and thickness analysis
  • 2023
  • Ingår i: NeuroImage. - 1053-8119. ; 276
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampus is one of the most studied neuroanatomical structures due to its involvement in attention, learning, and memory as well as its atrophy in ageing, neurological, and psychiatric diseases. Hippocampal shape changes, however, are complex and cannot be fully characterized by a single summary metric such as hippocampal volume as determined from MR images. In this work, we propose an automated, geometry-based approach for the unfolding, point-wise correspondence, and local analysis of hippocampal shape features such as thickness and curvature. Starting from an automated segmentation of hippocampal subfields, we create a 3D tetrahedral mesh model as well as a 3D intrinsic coordinate system of the hippocampal body. From this coordinate system, we derive local curvature and thickness estimates as well as a 2D sheet for hippocampal unfolding. We evaluate the performance of our algorithm with a series of experiments to quantify neurodegenerative changes in Mild Cognitive Impairment and Alzheimer's disease dementia. We find that hippocampal thickness estimates detect known differences between clinical groups and can determine the location of these effects on the hippocampal sheet. Further, thickness estimates improve classification of clinical groups and cognitively unimpaired controls when added as an additional predictor. Comparable results are obtained with different datasets and segmentation algorithms. Taken together, we replicate canonical findings on hippocampal volume/shape changes in dementia, extend them by gaining insight into their spatial localization on the hippocampal sheet, and provide additional, complementary information beyond traditional measures. We provide a new set of sensitive processing and analysis tools for the analysis of hippocampal geometry that allows comparisons across studies without relying on image registration or requiring manual intervention.
  •  
9.
  • Düzel, Emrah, et al. (författare)
  • Innovation in der Diagnostik – mobile Technologien
  • 2019
  • Ingår i: Nervenarzt. - : Springer Science and Business Media LLC. - 0028-2804. ; 90:9, s. 914-920
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Progressive cognitive deficits are the main clinical symptom of Alzheimer’s disease; however, the precise recording of cognitive deficits and assessment of their progression pose major problems in patient care and early interventions. Objective: Which problems for care and early intervention result from the current practice of cognitive assessment of patients with memory problems and which opportunities arise from the use of mobile apps? Material and methods: Evaluation of current care structures, discussion of basic work, expert recommendations and current developments. Results: The current practice of the pencil and paper-based diagnostics of cognitive deficits, which is temporally and spatially bound to a clinical environment, constrains the feasibility, validity and reliability of cognitive assessment and the quantification of progression. This limits the meaningful use of further diagnostic measures, such as magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) analyses. Recent progress in mobile app-based technologies, illustrated here with the example of the neotiv app, can help to overcome these problems. Conclusion: Mobile app-based technologies can help to improve the cognitive assessment of patients with the main symptom of memory complaints. They can reduce overuse and underuse of diagnostic and therapeutic pathways and enable a targeted and meaningful use of advanced diagnostics. In addition, they can structure risk-modifying preventive measures, identify iatrogenic impairment of cognition and in this respect also strengthen patient competence.
  •  
10.
  • Grande, Xenia, et al. (författare)
  • Content-specific vulnerability of recent episodic memories in Alzheimer's disease
  • 2021
  • Ingår i: Neuropsychologia. - : Elsevier BV. - 0028-3932. ; 160
  • Tidskriftsartikel (refereegranskat)abstract
    • Endel Tulving's episodic memory framework emphasizes the multifaceted re-experiencing of personal events. Indeed, decades of research focused on the experiential nature of episodic memories, usually treating recent episodic memory as a coherent experiential quality. However, recent insights into the functional architecture of the medial temporal lobe show that different types of mnemonic information are segregated into distinct neural pathways in brain circuits empirically associated with episodic memory. Moreover, recent memories do not fade as a whole under conditions of progressive neurodegeneration in these brain circuits, notably in Alzheimer's disease. Instead, certain memory content seem particularly vulnerable from the moment of their encoding while other content can remain memorable consistently across individuals and contexts. We propose that these observations are related to the content-specific functional architecture of the medial temporal lobe and consequently to a content-specific impairment of memory at different stages of the neurodegeneration. To develop Endel Tulving's inspirational legacy further and to advance our understanding of how memory function is affected by neurodegenerative conditions such as Alzheimer's disease, we postulate that it is compelling to focus on the representational content of recent episodic memories.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
Typ av publikation
tidskriftsartikel (23)
doktorsavhandling (3)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Berron, David (14)
Schneider, Anja (7)
Wiltfang, Jens (6)
Spottke, Annika (5)
Buerger, Katharina (5)
Peters, Oliver (5)
visa fler...
Teipel, Stefan (5)
Ramirez, Alfredo (4)
Fliessbach, Klaus (4)
Heneka, Michael T. (4)
Glanz, Wenzel (4)
Laske, Christoph (4)
Priller, Josef (4)
Maass, Anne (3)
Guitart-Masip, Marc (3)
Dichgans, Martin (3)
Ewers, Michael (3)
Brosseron, Frederic (3)
Janowitz, Daniel (3)
Altenstein, Slawek (3)
Blennow, Kaj, 1958 (2)
Zetterberg, Henrik, ... (2)
Boada, Mercè (2)
Tsolaki, Magda (2)
Pasquier, Florence (2)
Andreassen, Ole A (2)
Waern, Margda, 1955 (2)
Skoog, Ingmar, 1954 (2)
Ingelsson, Martin (2)
Norrving, Bo (2)
Kern, Silke (2)
Zettergren, Anna, 19 ... (2)
Scheltens, Philip (2)
Yakupov, Renat (2)
Cordonnier, Charlott ... (2)
Hiltunen, Mikko (2)
Bäckman, Lars (2)
Clarimon, Jordi (2)
Boland, Anne (2)
Deleuze, Jean-Franco ... (2)
Viswanathan, Anand (2)
Schmidt, Reinhold (2)
Swartz, Richard H. (2)
Black, Sandra E. (2)
Pastor, Pau (2)
Fazekas, Franz (2)
Bainbridge, Wilma A. (2)
Schütze, Hartmut (2)
Cardenas-Blanco, Art ... (2)
Bittner, Daniel (2)
visa färre...
Lärosäte
Lunds universitet (19)
Stockholms universitet (10)
Karolinska Institutet (9)
Göteborgs universitet (3)
Umeå universitet (2)
Uppsala universitet (2)
Språk
Engelska (28)
Tyska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Samhällsvetenskap (7)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy