SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dwibedi Chinmay Kumar) "

Sökning: WFRF:(Dwibedi Chinmay Kumar)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dwibedi, Chinmay Kumar, et al. (författare)
  • Biological amplification of low frequency mutations unravels laboratory culture history of the bio-threat agent Francisella tularensis
  • 2020
  • Ingår i: Forensic Science International. - : Elsevier. - 1872-4973 .- 1878-0326. ; 45
  • Tidskriftsartikel (refereegranskat)abstract
    • Challenges of investigating a suspected bio attack include establishing if microorganisms have been cultured to produce attack material and to identify their source. Addressing both issues, we have investigated genetic variations that emerge during laboratory culturing of the bacterial pathogen Francisella tularensis. Key aims were to identify genetic variations that are characteristic of laboratory culturing and explore the possibility of using biological amplification to identify genetic variation present at exceedingly low frequencies in a source sample. We used parallel serial passage experiments and high-throughput sequencing of F. tularensis to explore the genetic variation. We found that during early laboratory culture passages of F. tularensis, gene duplications emerged in the pathogen genome followed by single-nucleotide polymorphisms in genes for bacterial capsule synthesis. Based on a biological enrichment scheme and the use of high-throughput sequencing, we identified genetic variation that likely pre-existed in a source sample. The results support that capsule synthesis gene mutations are common during laboratory culture, and that a biological amplification strategy is useful for linking a F. tularensis sample to a specific laboratory variant among many highly similar variants.
  •  
3.
  • Dwibedi, Chinmay Kumar, 1987- (författare)
  • Francisella tularensis: persistence, dissemination and source attribution : a theoretical and computational approach
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The bacterium Francisella tularensis causing tularemia in humans and other mammals displays little genetic diversity among genomes across temporal and spatial scales. F. tularensis infects humans with an extremely low infectious dose and causes natural seasonal tularemia outbreaks. During the Cold War, this bacterium was developed as a biological weapon.In paper I, we aimed at investigating the genetic diversity of F. tularensis over space and time and were especially interested in the influence of spatial dispersal on the genetic diversity. By analyses of single-nucleotide polymorphisms (SNPs) among 205 F. tularensis genomes, we found that tularemia had moved from East to West over the European continent by dispersal patterns characterized by multiple long-range dispersal events. Evolutionary rate estimates based on the year of bacterial isolation from 1947 to 2012 indicated non-measurable rates. In outbreak areas with multiple recent outbreaks, however, there was a measurable rate of 0.4 SNPs/genome/year indicating that in areas with more intense disease activity, there is a detectable evolutionary rate. The findings suggest that long-range geographical dispersal events and mostly very low evolutionary rates are important factors contributing to a very low genetic diversity of F. tularensis populations.In paper II, we focused on a geographically restricted area with a history of frequent tularemia outbreaks to study F. tularensis persistence. By analyzing F. tularensis genomes from 138 individuals infected from 1994 to 2010 in Örebro County in Sweden and performing a long-term laboratory storage experiment, we explored the microbial population concept of a pathogen seed-bank. We found that eight indistinguishable genomes – each of them defined by no SNPs across 1.65 million whole-genome nucleotides – locally persisted over 2-9 years. We found unmeasurable SNP accumulation rates and overlapping bacterial generations among the outbreak genomes and that F. tularensis survived in saline for four years without nutrients. By these findings, and analyses of nucleotide substitution patterns, we suggest that a pathogen seed-bank effect is an important feature of F. tularensis ecology influencing genetic diversity.In paper III, we developed a new concept for source attribution of a F. tularensis sample. We aimed to identify genetic variation that is characteristic to laboratory culturing and we used culture amplification to identify genetic variation present at exceedingly low frequencies in a sample. Based on a biological enrichment scheme followed by high-throughput sequencing, we could track genetic variation back to a source sample. These results suggest that the concept has potential for linking a F. tularensis sample to its laboratory source sample.Taken together, the results presented in this thesis provide new understanding of the dissemination patterns and local persistence of tularemia. This is important for the interpretation of molecular epidemiology investigations of the disease. In a wider context, the results demonstrate how spatial dispersal and a microbial seed-bank effect may contribute to the diversity of a disease-causing agent. Finally, we have described a promising concept for source attribution of F. tularensis samples
  •  
4.
  • Dwibedi, Chinmay Kumar, et al. (författare)
  • Long-range dispersal moved Francisella tularensis into Western Europe from the East
  • 2016
  • Ingår i: Microbial Genomics. - : Microbiology Society. - 2057-5858. ; 2:12
  • Tidskriftsartikel (refereegranskat)abstract
    • For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n= 205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n= 195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.
  •  
5.
  •  
6.
  • Karah, Nabil, et al. (författare)
  • Novel Aminoglycoside Resistance Transposons and Transposon-Derived Circular Forms Detected in Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates
  • 2016
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 60:3, s. 1801-1818
  • Tidskriftsartikel (refereegranskat)abstract
    • Acinetobacter baumannii has emerged as an important opportunistic pathogen equipped with a growing number of antibiotic resistance genes. Our study investigated the molecular epidemiology and antibiotic resistance features of 28 consecutive carbapenem-resistant clinical isolates of A. baumannii collected throughout Sweden in 2012 and 2013. The isolates mainly belonged to clonal complexes (CCs) with an extensive international distribution, such as CC2 (n = 16) and CC25 (n = 7). Resistance to carbapenems was related to bla(OXA-23) (20 isolates), bla(OXA-24/40-like) (6 isolates), bla(OXA-467) (1 isolate), and ISAba1-bla(OXA-69) (1 isolate). Ceftazidime resistance was associated with bla(PER-7) in the CC25 isolates. Two classical point mutations were responsible for resistance to quinolones in all the isolates. Isolates with high levels of resistance to aminoglycosides carried the 16S rRNA methylase armA gene. The isolates also carried a variety of genes encoding aminoglycoside-modifying enzymes. Several novel structures involved in aminoglycoside resistance were identified, including Tn6279, Delta Tn6279, Ab-ST3- aadB, and different assemblies of Tn6020 and TnaphA6. Importantly, a number of circular forms related to the IS26 or ISAba125 composite trans-posons were detected. The frequent occurrence of these circular forms in the populations of several isolates indicates a potential role of these circular forms in the dissemination of antibiotic resistance genes.
  •  
7.
  •  
8.
  • Lärkeryd, Adrian, et al. (författare)
  • CanSNPer : a hierarchical genotype classifier of clonal pathogens
  • 2014
  • Ingår i: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1367-4811. ; 30:12, s. 1762-1764
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in typing methodologies have recently reformed the field of molecular epidemiology of pathogens. The falling cost of sequencing technologies is creating a deluge of whole genome sequencing data that burdens bioinformatics resources and tool development. In particular, single nucleotide polymorphisms in core genomes of pathogens are recognized as the most important markers for inferring genetic relationships because they are evolutionarily stable and amenable to high-throughput detection methods. Sequence data will provide an excellent opportunity to extend our understanding of infectious disease when the challenge of extracting knowledge from available sequence resources is met. Here, we present an efficient and user-friendly genotype classification pipeline, CanSNPer, based on an easily expandable database of predefined canonical single nucleotide polymorphisms.
  •  
9.
  • Souilmi, Yassine, et al. (författare)
  • Highlights of the first ISCB student council symposium in Africa 2015
  • 2015
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 4:ISCB Comm J
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This is a summary of the activities and scientific content of the first International Society for Computational Biology Student Council symposium in Africa. This meeting organized by the students for the students took place 8th of March 2015 in Dar Es Salaam, Tanzania.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy