SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dziawa Piotr) "

Sökning: WFRF:(Dziawa Piotr)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gryglas-Borysiewicz, Marta, et al. (författare)
  • Hydrostatic pressure influence on T-C in (Ga,Mn)As
  • 2020
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 101:5, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of hydrostatic pressure on the Curie temperature T-C of thin ferromagnetic (Ga,Mn)As layers is studied. New experimental data unambiguously point to both positive and negative pressure-induced changes of Curie temperature. The positive pressure coefficient is observed for samples with relatively high values of T-C and can be quantitatively described by the p-d Zener model of carrier-mediated ferromagnetism within the six-band k . p formalism and the ab initio approach. First-principles calculations of structural, electronic, and magnetic properties of (Ga,Mn)As show that antiferromagnetic coupling of substitutional Mn atoms with interstitial ones may account for a decrease of T-C under pressure in samples having a substantial concentration of interstitial Mn.
  •  
2.
  • Hussain, Ghulam, et al. (författare)
  • Pentagonal nanowires from topological crystalline insulators : a platform for intrinsic core-shell nanowires and higher-order topology
  • 2024
  • Ingår i: Nanoscale Horizons. - : Royal Society of Chemistry. - 2055-6764 .- 2055-6756. ; 9, s. 1290-1300
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the experimental realization of Pb1-xSnx Te pentagonal nanowires (NWs) with [110] orientation using molecular beam epitaxy techniques. Using first-principles calculations, we investigate the structural stability of NWs of SnTe and PbTe in three different structural phases: cubic, pentagonal with [001] orientation and pentagonal with [110] orientation. Within a semiclassical approach, we show that the interplay between ionic and covalent bonds favors the formation of pentagonal NWs. Additionally, we find that this pentagonal structure is more likely to occur in tellurides than in selenides. The disclination and twin boundary cause the electronic states originating from the NW core region to generate a conducting band connecting the valence and conduction bands, creating a symmetry-enforced metallic phase. The metallic core band has opposite slopes in the cases of Sn and Te twin boundaries, while the bands from the shell are insulating. We finally study the electronic and topological properties of pentagonal NWs unveiling their potential as a new platform for higher-order topology and fractional charge. These pentagonal NWs represent a unique case of intrinsic core-shell one-dimensional nanostructures with distinct structural, electronic and topological properties between the core and the shell region. (a) Scanning transmission electron microscopy image of a pentagonal nanowire; the inset shows the disclination and core chain (CC). The red bands from the core connect the valence and conduction bands for (b) cation and (c) anion twin-boundaries.
  •  
3.
  • Polley, Craig M., et al. (författare)
  • Fragility of the Dirac Cone Splitting in Topological Crystalline Insulator Heterostructures
  • 2018
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 12:1, s. 617-626
  • Tidskriftsartikel (refereegranskat)abstract
    • The "double Dirac cone" 2D topological interface states found on the (001) faces of topological crystalline insulators such as Pb1-xSnxSe feature degeneracies located away from time reversal invariant momenta and are a manifestation of both mirror symmetry protection and valley interactions. Similar shifted degeneracies in 1D interface states have been highlighted as a potential basis for a topological transistor, but realizing such a device will require a detailed understanding of the intervalley physics involved. In addition, the operation of this or similar devices outside of ultrahigh vacuum will require encapsulation, and the consequences of this for the topological interface state must be understood. Here we address both topics for the case of 2D surface states using angle-resolved photoemission spectroscopy. We examine bulk Pb1-xSnxSe(001) crystals overgrown with PbSe, realizing trivial/topological heterostructures. We demonstrate that the valley interaction that splits the two Dirac cones at each (X) over bar is extremely sensitive to atomic-scale details of the surface, exhibiting non-monotonic changes as PbSe deposition proceeds. This includes an apparent total collapse of the splitting for sub-monolayer coverage, eliminating the Lifshitz transition. For a large overlayer thickness we observe quantized PbSe states, possibly reflecting a symmetry confinement mechanism at the buried topological interface.
  •  
4.
  • Sadowski, Janusz, et al. (författare)
  • Defect-free SnTe topological crystalline insulator nanowires grown by molecular beam epitaxy on graphene
  • 2018
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 10:44, s. 20772-20778
  • Tidskriftsartikel (refereegranskat)abstract
    • SnTe topological crystalline insulator nanowires have been grown by molecular beam epitaxy on graphene/SiC substrates. The nanowires have a cubic rock-salt structure, they grow along the [001] crystallographic direction and have four sidewalls consisting of {100} crystal planes known to host metallic surface states with a Dirac dispersion. Thorough high resolution transmission electron microscopy investigations show that the nanowires grow on graphene in the van der Waals epitaxy mode induced when the catalyzing Au nanoparticles mix with Sn delivered from a SnTe flux, providing a liquid Au-Sn alloy. The nanowires are totally free from structural defects, but their {001} sidewalls are prone to oxidation, which points out the necessity of depositing a protective capping layer in view of exploiting the magneto-electric transport phenomena involving charge carriers occupying topologically protected states.
  •  
5.
  • Sulich, Adrian, et al. (författare)
  • Unit cell distortion and surface morphology diversification in a SnTe/CdTe(001) topological crystalline insulator heterostructure : influence of defect azimuthal distribution
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 10:8, s. 3139-3152
  • Tidskriftsartikel (refereegranskat)abstract
    • Challenges and opportunities arising from molecular beam epitaxial growth of topological crystalline insulator heterostructures composed of a rock-salt SnTe(001) layer of varying thickness (from 80 nm to 1000 nm) and a zinc blende 4 mu m thick CdTe(001) buffer layer grown on a commercial GaAs(001) substrate with 2 degrees off-cut toward the [100] direction were studied with a focus on crystal lattice strain, unit cell symmetry breaking and surface quality. The results indicate that the CdTe buffer is almost fully relaxed whereas in SnTe layers slight anisotropic relaxation is observed that varies from 86.2% to 98.3% with the layer thickness increasing. The relaxation process involves formation of misfit dislocations, mainly of Lomer-type (consisting of two associated 60 degrees dislocations), both at CdTe/GaAs and SnTe/CdTe interfaces. Azimuthal spatial distribution of defects is anisotropic due to a disparity of 60 degrees dislocation mobility toward orthogonal [-110] and [110] crystallographic directions. This results in a monoclinic distortion of the SnTe unit cell, as observed especially in the layers grown without additional Te molecular flux. A reflections selection method is proposed to measure such crystal deformations. Qualitatively new morphology of the SnTe surface of a reduced symmetry with nanoripple-like structures oriented close to the 100 (or, rarely, to 120) crystallographic in-plane direction is observed. The possible mechanism of their formation is dislocation-driven while their extended shape and predominant crystalline orientation may be influenced by the anisotropy of defect azimuthal distribution. Due to the magnitude of measured lattice strain (similar to 10(-3)) the monoclinic distortion in SnTe(001) layers is expected to be large enough to affect their physical properties, e.g., offering the way of controlling the crystal-symmetry-protected surface states (deformation-induced opening of the energy gap in the spectrum of metallic topological surface states). Thus, it may serve as an additional degree of freedom in designing topological spintronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy