SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Earley Eric J.) "

Sökning: WFRF:(Earley Eric J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ortiz Catalan, Max Jair, 1982, et al. (författare)
  • A highly integrated bionic hand with neural control and feedback for use in daily life
  • 2023
  • Ingår i: Science Robotics. - 2470-9476. ; 8:83
  • Tidskriftsartikel (refereegranskat)abstract
    • Restoration of sensorimotor function after amputation has remained challenging because of the lack of human-machine interfaces that provide reliable control, feedback, and attachment. Here, we present the clinical implementation of a transradial neuromusculoskeletal prosthesis-a bionic hand connected directly to the user's nervous and skeletal systems. In one person with unilateral below-elbow amputation, titanium implants were placed intramedullary in the radius and ulna bones, and electromuscular constructs were created surgically by transferring the severed nerves to free muscle grafts. The native muscles, free muscle grafts, and ulnar nerve were implanted with electrodes. Percutaneous extensions from the titanium implants provided direct skeletal attachment and bidirectional communication between the implanted electrodes and a prosthetic hand. Operation of the bionic hand in daily life resulted in improved prosthetic function, reduced postamputation, and increased quality of life. Sensations elicited via direct neural stimulation were consistently perceived on the phantom hand throughout the study. To date, the patient continues using the prosthesis in daily life. The functionality of conventional artificial limbs is hindered by discomfort and limited and unreliable control. Neuromusculoskeletal interfaces can overcome these hurdles and provide the means for the everyday use of a prosthesis with reliable neural control fixated into the skeleton.
  •  
2.
  • Earley, Eric J., et al. (författare)
  • Low-Cost, Wireless Bioelectric Signal Acquisition and Classification Platform
  • 2024
  • Ingår i: IEEE Access. - 2169-3536 .- 2169-3536. ; 12, s. 69350-69358
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioelectric signal classification is a flourishing area of biomedical research, however conducting this research in a clinical setting can be difficult to achieve. The lack of inexpensive acquisition hardware can limit researchers from collecting and working with real-time data. Furthermore, hardware requiring direct connection to a computer can impose restrictions on typically mobile clinical settings for data collection. Here, we present an open-source ADS1299-based bioelectric signal acquisition system with wireless capability suitable for mobile data collection in clinical settings. This system is based on the ADS_BP and BioPatRec, both open-source bioelectric signal acquisition hardware and MATLAB-based pattern recognition software, respectively. We provide 3D-printable housing enabling the hardware to be worn by users during experiments and demonstrate the suitability of this platform for real-time signal acquisition and classification. In conjunction, these developments provide a unified hardware-software platform for a cost of around $150 USD. This device can enable researchers and clinicians to record bioelectric signals from able-bodied or motor-impaired individuals in laboratory or clinical settings, and to perform offline or real-time intent classification for the control of robotic and virtual devices.
  •  
3.
  • Earley, Eric J., et al. (författare)
  • Neurostimulation Perception Obeys Strength-Duration Curves and is Primarily Driven by Pulse Amplitude
  • 2023
  • Ingår i: International IEEE/EMBS Conference on Neural Engineering, NER. - 1948-3554 .- 1948-3546. ; 2023-April
  • Konferensbidrag (refereegranskat)abstract
    • Stimulation of peripheral nerves can elicit sensations that are felt on distal or amputated portions of the limb, and thus is a promising technique to provide sensory feedback for prosthetic limbs. Sensory feedback provided in this way can confer a sense of proportionality by modulating the frequency, amplitude, and duration of stimulation pulses, however the relationship between stimulation amplitude and pulse duration has not been characterized. In this study, we demonstrate that neurostimulation perception closely follows strength-duration curve models and are generally constant over the course of up to 24 months, with a median rheobasic current of 113 μA and chronaxie of 193 μs. Monotonicity and concavity of data are also demonstrated to significantly predict the confidence interval size for rheobase and chronaxie estimates. Goodness of fit for the strength-duration curve model was high for data which showed significant monotonicity. Furthermore, modeling the psychometric response of stimulation amplitude and duration modulation revealed that amplitude modulation has just-noticeable difference of 7.7%, less than half that of duration modulation at 18.3%. The results taken together suggest that the strength-duration curve framework describes both nerve excitation and perception threshold relationships, and that neurostimulation pulse amplitude primarily drives discrimination for modulating sensory feedback.
  •  
4.
  • Earley, Eric, 1989, et al. (författare)
  • Wrist speed feedback improves elbow compensation and reaching accuracy for myoelectric transradial prosthesis users in hybrid virtual reaching task
  • 2023
  • Ingår i: Journal of NeuroEngineering and Rehabilitation. - : Springer Science and Business Media LLC. - 1743-0003. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Myoelectric prostheses are a popular choice for restoring motor capability following the loss of a limb, but they do not provide direct feedback to the user about the movements of the device—in other words, kinesthesia. The outcomes of studies providing artificial sensory feedback are often influenced by the availability of incidental feedback. When subjects are blindfolded and disconnected from the prosthesis, artificial sensory feedback consistently improves control; however, when subjects wear a prosthesis and can see the task, benefits often deteriorate or become inconsistent. We theorize that providing artificial sensory feedback about prosthesis speed, which cannot be precisely estimated via vision, will improve the learning and control of a myoelectric prosthesis. Methods: In this study, we test a joint-speed feedback system with six transradial amputee subjects to evaluate how it affects myoelectric control and adaptation behavior during a virtual reaching task. Results: Our results showed that joint-speed feedback lowered reaching errors and compensatory movements during steady-state reaches. However, the same feedback provided no improvement when control was perturbed. Conclusions: These outcomes suggest that the benefit of joint speed feedback may be dependent on the complexity of the myoelectric control and the context of the task.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy