SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ebinghaus R.) "

Search: WFRF:(Ebinghaus R.)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Song, S., et al. (author)
  • Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
  • 2015
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:12, s. 7103-7125
  • Journal article (peer-reviewed)abstract
    • We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg-0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg-0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is 5.8 Gg yr(-1). The ocean accounts for 3.2 Gg yr(-1) (55 % of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg-0. The optimized Asian anthropogenic emission of Hg-0 (gas elemental mercury) is 650-1770 Mg yr(-1), higher than its bottom-up estimates (550-800 Mg yr(-1)). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.
  •  
2.
  • Brenninkmeijer, C. A. M., et al. (author)
  • Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system
  • 2007
  • In: Atmospheric Chemistry and Physics. - 1680-7324. ; 7:18, s. 4953-4976
  • Journal article (peer-reviewed)abstract
    • An airfreight container with automated instruments for measurement of atmospheric gases and trace compounds was operated on a monthly basis onboard a Boeing 767-300 ER of LTU International Airways during long-distance flights from 1997 to 2002 (CARIBIC, Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container, http://www.caribic-atmospheric.com). Subsequently a more advanced system has been developed, using a larger capacity container with additional equipment and an improved inlet system. CARIBIC phase #2 was implemented on a new long-range aircraft type Airbus A340-600 of the Lufthansa German Airlines (Star Alliance) in December 2004, creating a powerful flying observatory. The instrument package comprises detectors for the measurement of O-3, total and gaseous H2O, NO and NOy, CO, CO2, O-2, Hg, and number concentrations of sub-micrometer particles (>4 nm, >12 nm, and >18 nm diameter). Furthermore, an optical particle counter (OPC) and a proton transfer mass spectrometer (PTR-MS) are incorporated. Aerosol samples are collected for analysis of elemental composition and particle morphology after flight. Air samples are taken in glass containers for laboratory analyses of hydrocarbons, halocarbons and greenhouse gases (including isotopic composition of CO2) in several laboratories. Absorption tubes collect oxygenated volatile organic compounds. Three differential optical absorption spectrometers (DOAS) with their telescopes mounted in the inlet system measure atmospheric trace gases such as BrO, HONO, and NO2. A video camera mounted in the inlet provides information about clouds along the flight track. The flying observatory, its equipment and examples of measurement results are reported.
  •  
3.
  • Sprovieri, F., et al. (author)
  • Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network
  • 2016
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:18, s. 11915-11935
  • Journal article (peer-reviewed)abstract
    • Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
  •  
4.
  • Ahrens, L., et al. (author)
  • Determination of polyfluoroalkyl compounds in water and suspended particulate matter in the river Elbe and North Sea, Germany
  • 2009
  • In: Frontiers of Environmental Science & Engineering in China. - : Springer Science and Business Media LLC. - 1673-7520 .- 1673-7415. ; 3:2, s. 152-170
  • Journal article (peer-reviewed)abstract
    • The distribution of polyfluoroalkyl compounds (PFCs) in the dissolved and particulate phase and their discharge from the river Elbe into the North Sea were studied. The PFCs quantified included C-4-C-8 perfluorinated sulfonates (PFSAs), 6:2 fluorotelomer sulfonate (6:2 FTS), C-6 and C-8 perfluorinated sulfonates (PFSiAs), C-4-C-12 perfluorinated carboxylic acids (PFCAs), perfluoro-3,7-dimethyl-octanoic acid (3,7m(2)-PFOA), perfluorooctane sulfonamide (FOSA), and n-ethyl perfluroctane sulfonamidoethanol (EtFOSE). PFCs were mostly distributed in the dissolved phase, where perfluorooctanoic acid (PFOA) dominated with 2.9-12.5 ng/L. In the suspended particulate matter FOSA and perfluorooctane sulfonate (PFOS) showed the highest concentrations (4.0 ng/L and 2.3 ng/L, respectively). The total flux of Sigma PFCs from the river Elbe was estimated to be 802 kg/year for the dissolved phase and 152 kg/year for the particulate phase. This indicates that the river Elbe acts as a source of PFCs into the North Sea. However, the concentrations of perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) in the North Sea were higher than that in the river Elbe, thus an alternative source must exist for these compounds
  •  
5.
  • Heue, K-P, et al. (author)
  • SO2 and BrO observation in the plume of the Eyjafjallajokull volcano 2010: CARIBIC and GOME-2 retrievals
  • 2011
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 11:6, s. 2973-2989
  • Journal article (peer-reviewed)abstract
    • The ash cloud of the Eyjafjallajokull (also referred to as: Eyjafjalla (e.g. Schumann et al., 2011), Eyjafjoll or Eyjafjoll (e.g. Ansmann et al., 2010)) volcano on Iceland caused closure of large parts of European airspace in April and May 2010. For the validation and improvement of the European volcanic ash forecast models several research flights were performed. Also the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) flying laboratory, which routinely measures at cruise altitude (approximate to 11 km) performed three dedicated measurements flights through sections of the ash plume. Although the focus of these flights was on the detection and quantification of the volcanic ash, we report here on sulphur dioxide (SO2) and bromine monoxide (BrO) measurements with the CARIBIC DOAS (Differential Optical Absorption Spectroscopy) instrument during the second of these special flights on 16 May 2010. As the BrO and the SO2 observations coincide, we assume the BrO to have been formed inside the volcanic plume. Average SO2 and BrO mixing ratios of approximate to 40 ppb and approximate to 5 ppt respectively are retrieved inside the plume. The BrO to SO2 ratio retrieved from the CARIBIC observation is approximate to 1.3x10(-4). Both SO2 and BrO observations agree well with simultaneous satellite (GOME-2) observations. SO2 column densities retrieved from satellite observations are often used as an indicator for volcanic ash. As the CARIBIC O-4 column densities changed rapidly during the plume observation, we conclude that the aerosol and the SO2 plume are collocated. For SO2 some additional information on the local distribution can be derived from a comparison of forward and back scan GOME-2 data. More details on the local plume size and position are retrieved by combining CARIBIC and GOME-2 data.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Martinsson, B., et al. (author)
  • Analyzing atmospheric trace gases and aerosols using passenger aircraft
  • 2005
  • In: Eos. - 0096-3941. ; 86:8, s. 77-77
  • Research review (peer-reviewed)abstract
    • CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) resumed regular measurement flights with an extended scientific payload in December 2004. After an automated measurement container was successfully deployed on intercontinental flights using a Boeing 767 from 1997 to 2002, a far more powerful package now is deployed using a new Airbus A340‐600 made available by Lufthansa German Airlines (Star Alliance). The new CARIBIC system will help address a range of current atmospheric science questions during its projected lifetime of 10 years.European and Japanese scientists are developing a variety of atmospheric chemistry research and monitoring projects based on the use of passenger aircraft. This is a logical approach with a main advantage being that near‐global coverage is obtained, in contrast to limited coverage through research aircraftbased expeditions. Moreover, highly detailed and consistent data sets can be acquired, as compared to satellite observations in general. In addition, even compared to land‐based observatories, operational costs are moderate.
  •  
10.
  • Munthe, John, et al. (author)
  • Distribution of atmospheric mercury species in Northern Europe: Final results from the MOE-project
  • 2003
  • In: Atmospheric Environment. - 1352-2310 .- 1873-2844. ; 37:Suppl 1
  • Journal article (peer-reviewed)abstract
    • The mercury species over Europe (MOE) project was aimed at identifying sources, occurrence and atmospheric behaviour of atmospheric Hg species. Within MOE, emission measurements, ambient air measurements, process and regional-scale modelling and laboratory measurements were conducted. In this work, a summary of some of the main results is given. From the emission measurements, information on stack gas concentrations and emission factors for five coal fired power plants and three waste incinerators are presented. Results from field measurements of mercury species in ambient air at five locations in Northern Europe are presented. Examples from regional-scale atmospheric modelling are also given. The results emphasise the importance of information on Hg species for instance in emission inventories and measurement data from background sites. Furthermore, the importance of considering the role of the global cycling of mercury in future control strategies is emphasised
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view