SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ebishima Ken) "

Sökning: WFRF:(Ebishima Ken)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ebishima, Ken, et al. (författare)
  • Relationship of the Acoustic Startle Response and Its Modulation to Adaptive and Maladaptive Behaviors in Typically Developing Children and Those With Autism Spectrum Disorders : A Pilot Study
  • 2019
  • Ingår i: Frontiers in Human Neuroscience. - : Frontiers Media S.A.. - 1662-5161. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Autism spectrum disorder (ASD) is associated with persistent impairments in adaptive functioning across multiple domains of daily life. Thus, investigation of the biological background of both adaptive and maladaptive behaviors may shed light on developing effective interventions for improving social adaptation in ASD. In this study, we examined the relationship between adaptive/maladaptive behaviors and the acoustic startle response (ASR) and its modulation, which are promising neurophysiological markers for ASD translational research. Method: We investigated the ASR and its modulation in 11 children with ASD and 18 with typical development (TD), analyzing the relationship between startle measures and adaptive/maladaptive behaviors assessed with the Vineland Adaptive Behavior Scales (VABS) Second Edition. Results: Peak-ASR latency was negatively correlated with the VABS total score and socialization domain score of adaptive behaviors, while the ASR magnitude for relatively weak stimuli of 75-85 dB was positively correlated with VABS maladaptive behavior scores. Prepulse inhibition (PPI) at the prepulse intensity of 70-75 dB was also correlated with VABS maladaptive behavior. However, these relationships did not remain significant after adjustment for multiple comparisons. Conclusions: Our results indicate that the prolonged peak-ASR latency of ASD children might be associated with impairment in the developmental level of adaptive behavior, and that the greater ASR magnitude to relatively weak acoustic stimuli and smaller PPI of ASD children might increase the risk of maladaptive behavior. Future studies that have larger sample sizes will be important for further elucidating the neurophysiological factors that underpin adaptive as well as maladaptive behaviors in ASD.
  •  
2.
  • Takahashi, Hidetoshi, et al. (författare)
  • Acoustic Hyper-Reactivity and Negatively Skewed Locomotor Activity in Children With Autism Spectrum Disorders : An Exploratory Study
  • 2018
  • Ingår i: Frontiers in Psychiatry. - : Frontiers Media S.A.. - 1664-0640. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigation of objective and quantitative behavioral phenotypes along with neurobiological endophenotypes might lead to increased knowledge of the mechanisms that underlie autism spectrum disorders (ASD). Here, we investigated the association between locomotor dynamics and characteristics of the acoustic startle response (ASR) and its modulation in ASD (n = 14) and typically developing (TD, n = 13) children. The ASR was recorded in response to acoustic stimuli in increments of 10 dB (65-105 dB SPL). We calculated the average ASR magnitude for each stimulus intensity and peak-ASR latency. Locomotor activity was continuously measured with a watch-type actigraph. We examined statistics of locomotor activity, such as mean activity levels and the skewness of activity. Children with ASD had a significantly greater ASR magnitude in response to a weak acoustic stimulus, which reflects acoustic hyper-reactivity. The skewness of all-day activity was significantly more negative in children with ASD than those with TD. Skewness of daytime activity was also more negative, although only of borderline statistical significance. For all children, the higher mean and more negatively skewed daytime activity, reflecting hyperactivity that was associated with sporadic large daytime "troughs," was significantly correlated with acoustic hyper-reactivity. The more negatively skewed locomotor activity occurring in the daytime was also associated with impaired sensorimotor gating, examined as prepulse inhibition at a prepulse intensity of 70 dB. This comprehensive investigation of locomotor dynamics and the ASR extends our understanding of the neurophysiology that underlies ASD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy