SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eckmair B.) "

Sökning: WFRF:(Eckmair B.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eckmair, B., et al. (författare)
  • Glycosylation at an evolutionary nexus: the brittle star Ophiactis savignyi expresses both vertebrate and invertebrate N-glycomic features
  • 2020
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 295:10, s. 3173-3188
  • Tidskriftsartikel (refereegranskat)abstract
    • Echinoderms are among the most primitive deuterostomes and have been used as model organisms to understand chordate biology because of their close evolutionary relationship to this phylogenetic group. However, there are almost no data available regarding the N-glycomic capacity of echinoderms, which are otherwise known to produce a diverse set of species-specific glycoconjugates, including ones heavily modified by fucose, sulfate, and sialic acid residues. To increase the knowledge of diversity of carbohydrate structures within this phylum, here we conducted an in-depth analysis of N-glycans from a brittle star (Ophiactis savignyi) as an example member of the class Ophiuroidea. To this end, we performed a multi-step N-glycan analysis by HPLC and various exoglyosidase and chemical treatments in combination with MALDI-TOF MS and MS/MS. Using this approach, we found a wealth of hybrid and complex oligosaccharide structures reminiscent of those in higher vertebrates as well as some classical invertebrate glycan structures. 70% of these N-glycans were anionic, carrying either sialic acid, sulfate, or phosphate residues. In terms of glycophylogeny, our data position the brittle star between invertebrates and vertebrates and confirm the high diversity of N-glycosylation in lower organisms.
  •  
2.
  • Hykollari, A., et al. (författare)
  • Isomeric separation and recognition of anionic and zwitterionic n-glycans from royal jelly glycoproteins
  • 2018
  • Ingår i: Molecular and Cellular Proteomics. - 1535-9476. ; 17:11, s. 2177-2196
  • Tidskriftsartikel (refereegranskat)abstract
    • Royal jelly has received attention because of its necessity for the development of queen honeybees as well as claims of benefits on human health; this product of the hypopharyngeal glands of worker bees contains a large number of proteins, some of which have been claimed to have various biological effects only in their glycosylated state. However, although there have been glycomic and glycoproteomic analyses in the past, none of the glycan structures previously defined would appear to have potential to trigger specific biological functions. In the current study, whole royal jelly as well as single protein bands were subject to off-line LC-MALDI-TOF MS glycomic analyses, complemented by permethylation, Western blotting and arraying data. Similarly to recent in-depth studies on other insect species, previously overlooked glucuronic acid termini, sulfation of mannose residues and core β-mannosylation of the N-glycans were found; additionally, a relatively rare zwitterionic modification with phosphoethanolamine is present, in contrast to the phosphorylcholine occurring in lepidopteran species. Indicative of tissue-specific remodelling of glycans in the Golgi apparatus of hypopharyngeal gland cells, only a low amount of fucosylated or paucimannosidic glycans were detected as compared with other insect samples or even bee venom. The unusual modifications of hybrid and multiantennary structures defined here may not only have a physiological role in honeybee development, but represent epitopes recognized by pentraxins with roles in animal innate immunity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
  •  
3.
  • Hykollari, A., et al. (författare)
  • More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species
  • 2016
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476. ; 15:1, s. 73-92
  • Tidskriftsartikel (refereegranskat)abstract
    • N-glycosylation is an essential set of post-translational modifications of proteins; in the case of filamentous fungi, N-glycans are present on a range of secreted and cell wall proteins. In this study, we have compared the glycans released by peptide/N-glycosidase F from proteolysed cell pellets of three Penicillium species (P. dierckxii, P. nordicum and P. verrucosum that all belong to the Eurotiomycetes). Although the major structures are all within the range Hex(5-11)HexNAc(2) as shown by mass spectrometry, variations in reversed-phase chromatograms and MS/MS fragmentation patterns are indicative of differences in the actual structure. Hydrofluoric acid and mannosidase treatments revealed that the oligomannosidic glycans were not only in part modified with phosphoethanolamine residues and outer chain och1-dependent mannosylation, but that bisecting galactofuranose was present in a species-dependent manner. These data are the first to specifically show the modification of N-glycans in fungi with zwitterionic moieties. Furthermore, our results indicate that mere mass spectrometric screening is insufficient to reveal the subtly complex nature of N-glycosylation even within a single fungal genus.
  •  
4.
  • Martini, F., et al. (författare)
  • Highly modified and immunoactive N-glycans of the canine heartworm
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The canine heartworm (Dirofilaria immitis) is a mosquito-borne parasitic nematode whose range is extending due to climate change. In a four-dimensional analysis involving HPLC, MALDI-TOF-MS and MS/MS in combination with chemical and enzymatic digestions, we here reveal an N-glycome of unprecedented complexity. We detect N-glycans of up to 7000 Da, which contain long fucosylated HexNAc-based repeats, as well as glucuronylated structures. While some modifications including LacdiNAc, chitobiose, alpha 1,3-fucose and phosphorylcholine are familiar, anionic N-glycans have previously not been reported in nematodes. Glycan array data show that the neutral glycans are preferentially recognised by IgM in dog sera or by mannose binding lectin when antennal fucose and phosphorylcholine residues are removed; this pattern of reactivity is reversed for mammalian C-reactive protein, which can in turn be bound by the complement component C1q. Thereby, the N-glycans of D. immitis contain features which may either mediate immunomodulation of the host or confer the ability to avoid immune surveillance. RAHAM D, 1991, JOURNAL OF PARASITOLOGY, V77, P254
  •  
5.
  • Vanbeselaere, J., et al. (författare)
  • Sulfated and sialylated N-glycans in the echinoderm Holothuria atra reflect its marine habitat and phylogeny
  • 2020
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 295:10, s. 3159-3172
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the earliest deuterostomes, the echinoderms are an evolutionary important group of ancient marine animals. Within this phylum, the holothuroids (sea cucumbers) are known to produce a wide range of glycoconjugate biopolymers with apparent benefits to health; therefore, they are of economic and culinary interest throughout the world. Other than their highly modified glycosaminoglycans (e.g. fucosylated chondroitin sulfate and fucoidan), nothing is known about their protein-linked glycosylation. Here we used multistep N-glycan fractionation to efficiently separate anionic and neutral N-glycans before analyzing the N-glycans of the black sea cucumber (Holothuria atra) by MS in combination with enzymatic and chemical treatments. These analyses showed the presence of various fucosylated, phosphorylated, sialylated, and multiply sulfated moieties as modifications of oligomannosidic, hybrid, and complex-type N-glycans. The high degree of sulfation and fucosylation parallels the modifications observed previously on holothuroid glycosaminoglycans. Compatible with its phylogenetic position, H. atra not only expresses vertebrate motifs such as sulfo? and sialyl?Lewis A epitopes but displays a high degree of anionic substitution of its glycans, as observed in other marine invertebrates. Thus, as for other echinoderms, the phylum- and order-specific aspects of this species' N-glycosylation reveal both invertebrate- and vertebrate-like features.
  •  
6.
  • Eckmair, B., et al. (författare)
  • Multistep Fractionation and Mass Spectrometry Reveal Zwitterionic and Anionic Modifications of the N- and O-glycans of a Marine Snail
  • 2016
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476. ; 15:2, s. 573-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Various studies in the past have revealed that molluscs can produce a wide range of rather complex N-glycan structures, which vary from those occurring in other invertebrate animals; particularly methylated glycans have been found in gastropods, and there are some reports of anionic glycans in bivalves. Due to the high variability in terms of previously described structures and methodologies, it is a major challenge to establish glycomic workflows that yield the maximum amount of detailed structural information from relatively low quantities of sample. In this study, we apply differential release with peptide: N-glycosidases F and A followed by solid-phase extraction on graphitized carbon and reversed-phase materials to examine the glycome of Volvarina rubella (C. B. Adams, 1845), a margin snail of the clade Neogastropoda. The resulting four pools of N-glycans were fractionated on a fused core RP-HPLC column and subject to MALDI-TOF MS and MS/MS in conjunction with chemical and enzymatic treatments. In addition, selected N-glycan fractions, as well as O-glycans released by beta-elimination, were analyzed by porous graphitized carbon-LC-MS and MSn. This comprehensive approach enabled us to determine a number of novel modifications of protein-linked glycans, including N-methyl-2-aminoethylphosphonate on mannose and N-acetylhexosamine residues, core beta 1,3-linked mannose, zwitterionic moieties on core Gal beta 1,4Fuc motifs, additional mannose residues on oligomannosidic glycans, and bisubstituted antennal fucose; furthermore, typical invertebrate N-glycans with sulfate and core fucose residues are present in this gastropod.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy