SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edberg H.) "

Sökning: WFRF:(Edberg H.)

  • Resultat 1-10 av 91
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Witasse, O., et al. (författare)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
2.
  • Grun, E., et al. (författare)
  • The 2016 Feb 19 outburst of comet 67P/CG : an ESA Rosetta multi-instrument study
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S220-S234
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09: 40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors > 100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors > 10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from similar to-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta ( 34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (similar to 25 m s(-1)) while 100 mu m radius particles were detected by the GIADA dust instrument similar to 1 h later at a speed of 6 m s(-1). The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.
  •  
3.
  • Snodgrass, C., et al. (författare)
  • The 67P/Churyumov-Gerasimenko observation campaign in support of the Rosetta mission
  • 2017
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 375:2097
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/ Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively 'well-behaved' comet, typical of Jupiter family comets and with activity patterns that repeat from orbit to orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends-in this paper, we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies. This article is part of the themed issue 'Cometary science after Rosetta'.
  •  
4.
  • Volwerk, M., et al. (författare)
  • Current sheets in comet 67P/Churyumov-Gerasimenko's coma
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:3, s. 3308-3321
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta Plasma Consortium (RPC) data are used to investigate the presence of current sheets in the coma of comet 67P/Churyumov-Gerasimenko. The interaction of the interplanetary magnetic field (IMF) transported by the solar wind toward the outgassing comet consists amongst others of mass loading and field line draping near the nucleus. The draped field lines lead to so-called nested draping because of the constantly changing direction of the IMF. It is shown that the draping pattern is strongly variable over the period of one month. Nested draping results in neighbouring regions with oppositely directed magnetic fields, which are separated by current sheets. Selected events on 5 and 6 June 2015 are studied, which show that there are strong rotations of the magnetic field with associated current sheets that have strengths from several tens up to hundreds of nA/m(2). Not all discussed current sheets show the characteristic peak in plasma density at the centre of the sheet, which might be related to the presence of a guide field. There is no evidence for different kinds of plasmas on either side of a current sheet, and no strongly accelerated ions have been observed which could have been an indication of magnetic reconnection in the current sheets. Plain Language Summary The solar wind, consisting of plasma and magnetic field, cannot uninhabited flow past an active comet. The interaction of the gas coming out of the comet, which gets ionized, and the solar wind leads to a slowing down of the latter, and the magnetic field gets draped around the nucleus of the comet. As the solar wind magnetic field is not constant over time, there will be layers of different directions draped on top of each other, which leads to the generation of current sheets. In this paper the strength of the currents is determined, and signatures of possible magnetic reconnection are looked for but were not found.
  •  
5.
  • De Keyser, J., et al. (författare)
  • In situ plasma and neutral gas observation time windows during a comet flyby : Application to the Comet Interceptor mission
  • 2024
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 244
  • Tidskriftsartikel (refereegranskat)abstract
    • A comet flyby, like the one planned for ESA's Comet Interceptor mission, places stringent requirements on spacecraft resources. To plan the time line of in situ plasma and neutral gas observations during the flyby, the size of the comet magnetosphere and neutral coma must be estimated well. For given solar irradiance and solar wind conditions, comet composition, and neutral gas expansion speed, the size of gas coma and magnetosphere during the flyby can be estimated from the gas production rate and the flyby geometry. Combined with flyby velocity, the time spent in these regions can be inferred and a data acquisition plan can be elaborated for each instrument, compatible with the limited data storage capacity. The sizes of magnetosphere and gas coma are found from a statistical analysis based on the probability distributions of gas production rate, flyby velocity, and solar wind conditions. The size of the magnetosphere as measured by bow shock standoff distance is 105-106 km near 1 au in the unlikely case of a Halley-type target comet, down to a nonexistent bow shock for targets with low activity. This translates into durations up to 103-104 seconds. These estimates can be narrowed down when a target is identified far from the Sun, and even more so as its activity can be predicted more reliably closer to the Sun. Plasma and neutral gas instruments on the Comet Interceptor main spacecraft can monitor the entire flyby by using an adaptive data acquisition strategy in the context of a record-and-playback scenario. For probes released from the main spacecraft, the inter-satellite communication link limits the data return. For a slow flyby of an active comet, the probes may not yet be released during the inbound bow shock crossing.
  •  
6.
  • Edberg, Niklas J. T., et al. (författare)
  • Simultaneous measurements of Martian plasma boundaries by Rosetta and Mars Express
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:8-9, s. 1085-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first two-spacecraft near-simultaneous observations of the Martian bow shock (BS), magnetic pileup boundary (MPB) and photo-electron boundary (PEB) obtained by the plasma instruments onboard Rosetta and Mars Express during the Rosetta Mars fly by on February 25, 2007. Our observations are compared with shape models for the BS and MPB derived from previous statistical studies. The MPB is found at its expected position but the BS for this event is found significantly closer to the planet than expected for the rather slow and moderately dense solar wind. Cross-calibration of the density measurements on the two spacecraft gives a density profile through the magnetosheath, indicating an increasing solar wind flux during the Rosetta passage which is consistent with the multiple BS crossings at the Rosetta exit.
  •  
7.
  • Edberg, Niklas, et al. (författare)
  • Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:12, s. 4533-4545
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX) on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during similar to 24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF) downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.
  •  
8.
  • Madanian, H., et al. (författare)
  • Solar cycle variations in ion composition in the dayside ionosphere of Titan
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:8, s. 8013-8037
  • Tidskriftsartikel (refereegranskat)abstract
    • One Titanian year spans over two complete solar cycles, and the solar irradiance has a significant effect on ionospheric densities. Solar cycle 24 has been one of the quietest cycles on record. In this paper we show data from the Cassini ion and neutral mass spectrometer (INMS) and the radio and plasma wave science Langmuir probe spanning the time period from early 2005, at the declining phase of solar cycle 23, to late 2015 at the declining phase of solar cycle 24. Densities of different ion species measured by the INMS show a consistent enhancement for high solar activity, particularly near the ionospheric peak. The density enhancement is best seen in primary ion species such as CH3+ rather than heavier ion species such as HCNH+. Unlike at Earth, where the ionosphere and atmosphere thermally expand at high solar activity, at Titan the altitude of the ionospheric peak decreases, indicating that the underlying neutral atmosphere was less extensive. Among the major ion species, CH5+ shows the largest decrease in peak altitude, whereas heavy ions such as C3H5+ show very little decrease. We also calculate the ion production rates using a theoretical model and a simple empirical model using INMS data and show that these effectively predict the increased ion production rates at high solar activity.
  •  
9.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
10.
  • Desai, R. T., et al. (författare)
  • Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan's Ionosphere
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 844:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Cassini discovered a plethora of neutral and ionized molecules in Titan's ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q-1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950-1300 km. We report on detections consistently centered between 25.8 and 26.0 u q-1 and between 49.0-50.1 u q(-1) which are identified as belonging to the carbon chain anions, CN-/C3N- and/or C2H-/C4H-, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73-74 u q-1 could be attributed to the further carbon chain anions C5N-/C6H- but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at > 100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below < 1100 km, the low-mass anions (< 150 u q-1) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 91
Typ av publikation
tidskriftsartikel (84)
konferensbidrag (3)
bokkapitel (2)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (82)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Edberg, Niklas J. T. (41)
Nilsson, H (19)
Henri, P. (16)
Eriksson, Anders. I. (14)
Wahlund, Jan-Erik (14)
Richter, I. (13)
visa fler...
Eriksson, Anders (12)
Goldstein, R. (12)
Alarcón-Riquelme, Ma ... (11)
Glassmeier, K. -H (11)
Vigren, Erik (11)
Kelly, Jennifer A. (9)
Kaufman, Kenneth M. (9)
Gilkeson, Gary S. (9)
James, Judith A. (9)
Kimberly, Robert P. (9)
Harley, John B. (9)
Gaffney, Patrick M. (9)
Volwerk, M. (9)
Edberg, Anna-Karin (9)
Cowley, S. W. H. (9)
Goetz, C (9)
Evans, V (8)
O'Brien, H (8)
Edberg, Jeffrey C. (8)
Merrill, Joan T. (8)
Vyse, Timothy J. (8)
Maksimovic, M. (8)
Bale, S. D. (8)
Soucek, J. (8)
Barabash, S. (8)
Horbury, T. S. (8)
Vecchio, A. (7)
Guthridge, Joel M. (7)
Tsao, Betty P. (7)
Ramsey-Goldman, R (7)
Khotyaintsev, Yuri V ... (7)
Vaivads, Andris (7)
Angelini, V (7)
Chust, T. (7)
Krasnoselskikh, V (7)
Kretzschmar, M. (7)
Lorfevre, E. (7)
Plettemeier, D. (7)
Steller, M. (7)
Stverak, S. (7)
Sjöberg, Marina (7)
Wieser, G. Stenberg (7)
Lester, M. (7)
Koenders, C. (7)
visa färre...
Lärosäte
Uppsala universitet (60)
Karolinska Institutet (16)
Kungliga Tekniska Högskolan (15)
Högskolan Kristianstad (13)
Lunds universitet (8)
Umeå universitet (5)
visa fler...
Malmö universitet (4)
Göteborgs universitet (2)
Luleå tekniska universitet (2)
Örebro universitet (2)
Linköpings universitet (2)
visa färre...
Språk
Engelska (86)
Svenska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (48)
Medicin och hälsovetenskap (18)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy