SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edis O) "

Sökning: WFRF:(Edis O)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • yilmas, I, 1980, et al. (författare)
  • Application and Comparison of Two Different DNS Algorithms for Simulating Transition to Turbulence in Taylor-Green Vortex Flow
  • 2012
  • Ingår i: Springer Proceedings in Physics. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 0930-8989 .- 1867-4941. ; 141, s. 91-94
  • Konferensbidrag (refereegranskat)abstract
    • An all-Mach number, fully implicit, non-dissipative DNS algorithm and an incompressible, dissipative DNS algorithm were applied for simulating transition to turbulence in TGV flow to assess their behavior for this flow regime. The all-Mach number solver was developed and parallelized. A method was also adopted to remove oscillating pressure corrections in time. In order to compare the behavior of the algorithms, various flow diagnostics were calculated. The results were also compared to results given in the literature. The development of the flow and the peak structures show some differences due to different dissipative and energy conserving properties of the algorithms. However the physics of TGV flow are well captured by both, even though the grid is not fully resolved.
  •  
2.
  • yilmas, I, 1980, et al. (författare)
  • Parallel implicit DNS of temporally-evolving turbulent shear layer instability
  • 2014
  • Ingår i: Journal of Computational and Applied Mathematics. - : Elsevier BV. - 0377-0427. ; 259:PART B, s. 651-659
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a temporally-evolving incompressible and compressible Turbulent Shear Layer (TSL) instability problem is solved using an all-speed (all-Mach), implicit, non-dissipative and kinetic energy conserving algorithm. An in-house, fully parallel, finite-volume Direct Numerical Simulation (DNS) solver was developed using PETSc. Convergence characteristics at low-Mach numbers were also improved using a relaxation procedure. We aim here to assess the performance and behavior of the present algorithm for complex flows which contain multi-scale physics and gradually evolve into turbulence. The results show that the algorithm is able to produce correct physical mechanisms and capture the evolution of the turbulent fluctuations for both incompressible and compressible cases. It is observed that the non-dissipative and kinetic energy conserving properties make the algorithm powerful and applicable to challenging problems. For higher Mach numbers, a shock-capturing or a dissipative mechanism is required for robustness. © 2013 Elsevier B.V. All rights reserved.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy