SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edoff Marika 1965 ) "

Sökning: WFRF:(Edoff Marika 1965 )

  • Resultat 1-10 av 90
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aboulfadl, Hisham, 1986, et al. (författare)
  • Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells - Insight from Theory and Experiment
  • 2021
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 13:6, s. 7188-7199
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver alloying of Cu(In,Ga)Se2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to ∼60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to ∼20 ppm for films without Ag and up to ∼200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices.
  •  
2.
  • Aboulfadl, Hisham, et al. (författare)
  • Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells
  • 2019
  • Ingår i: Microscopy and Microanalysis. - : CAMBRIDGE UNIV PRESS. - 1435-8115 .- 1431-9276. ; 25:2, s. 532-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface sulfurization of Cu(In,Ga)Se 2 (CIGSe) absorbers is a commonly applied technique to improve the conversion efficiency of the corresponding solar cells, via increasing the bandgap towards the heterojunction. However, the resulting device performance is understood to be highly dependent on the thermodynamic stability of the chalcogenide structure at the upper region of the absorber. The present investigation provides a high-resolution chemical analysis, using energy dispersive X-ray spectrometry and laser-pulsed atom probe tomography, to determine the sulfur incorporation and chemical re-distribution in the absorber material. The post-sulfurization treatment was performed by exposing the CIGSe surface to elemental sulfur vapor for 20 min at 500°C. Two distinct sulfur-rich phases were found at the surface of the absorber exhibiting a layered structure showing In-rich and Ga-rich zones, respectively. Furthermore, sulfur atoms were found to segregate at the absorber grain boundaries showing concentrations up to ∼7 at% with traces of diffusion outwards into the grain interior.
  •  
3.
  • Alberto, Helena, V, et al. (författare)
  • Characterization of the Interfacial Defect Layer in Chalcopyrite Solar Cells by Depth-Resolved Muon Spin Spectroscopy
  • 2022
  • Ingår i: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 9:19
  • Tidskriftsartikel (refereegranskat)abstract
    • As devices become smaller and more complex, the interfaces between adjacent materials become increasingly important and are often critical to device performance. An important research goal is to improve the interface between the absorber and the window layer by inserting buffer layers to adjust the transition. Depth-resolved studies are key for a fundamental understanding of the interface. In the present experiment, the interface between the chalcopyrite Cu(In,Ga)Se-2 absorber and various buffer layers are investigated using low-energy muon spin rotation (mu SR) spectroscopy. Depth resolution in the nm range is achieved by implanting the muons with different energies so that they stop at different depths in the sample. Near the interface, a region about 50 nm wide is detected where the lattice is more distorted than further inside the absorber. The distortion is attributed to the long-range strain field caused by defects. These measurements allow a quantification of the corresponding passivation effect of the buffer layer. Bath-deposited cadmium sulfide provides the best defect passivation in the near interface region, in contrast to the dry-deposited oxides, which have a much smaller effect. The experiment demonstrates the great potential of low energy mu SR spectroscopy for microscopic interfacial studies of multilayer systems.
  •  
4.
  • Alberto, H. V., et al. (författare)
  • Low energy muon study of the p-n interface in chalcopyrite solar cells
  • 2023
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 2462
  • Tidskriftsartikel (refereegranskat)abstract
    • The slow muon technique was used to study the p-n junction of chalcopyrite solar cells. A defect layer near the interface was identified and the passivation of the defects by buffer layers was studied. Several cover layers on top of the chalcopyrite Cu(In,Ga)Se2 (CIGS) semiconductor absorber were investigated in this work, namely CdS, ZnSnO, Al2O3 and SiO2. Quantitative results were obtained: The defect layer extends about 50 nm into the CIGS absorber, the relevant disturbance is strain in the lattice, and CdS provides the best passivation, oxides have a minor effect. In the present contribution, specific aspects of the low-energy muon technique in connection with this research are discussed.
  •  
5.
  • Anacleto, Pedro, et al. (författare)
  • Precisely nanostructured HfO2 rear passivation layers for ultra-thin Cu(In,Ga)Se-2
  • 2022
  • Ingår i: Progress in Photovoltaics. - : John Wiley & Sons. - 1062-7995 .- 1099-159X. ; 30:11, s. 1289-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • The quest for material-efficient Cu(In,Ga)Se-2 (CIGS) solar cells encourages the development of ultra-thin absorbers. Their use reduces material consumption and energy usage during production by increasing the throughput. Thereby, both the bill of materials as well as the energy and capital costs are reduced. However, because thin absorbers are prone to increase back contact recombination, back surface passivation schemes are necessary to reach a similar or higher conversion efficiency than for absorbers with conventional thickness. Here, we investigate nanostructured hafnium oxide (HfO2) rear passivation layers for ultra-thin CIGS solar cells. We fabricate regular arrays of point contacts with 200 nm diameter through HfO2 layers with thicknesses between 7 and 40 nm using electron beam lithography and reactive ion etching. The current-voltage curves of solar cells with a 500 nm thick CIGS absorber layer and the nanostructured passivation layer show improved performance concerning V-oc and J(sc) compared to non-passivated reference devices. Furthermore, external quantum efficiency and optical reflection confirm an effective passivation behavior, with an average efficiency increase of up to 1.2% for the cells with the 40 nm thick HfO2 layer. In addition, simulation work shows that even 40 nm thick HfO2 passivation layers have only a minimal effect on the optical properties of ultra-thin CIGS solar cells, and hence, the photocurrent increase verified experimentally stems from electrical improvements caused by the HfO2 layer passivation effect. We also investigate the impact of ultra-thin (0.3, 0.6, 1.3, and 2.5 nm) non-patterned HfO2 passivation layers on the same type of solar cells. However, these results showed no improvement in solar cell performance, despite an increase in the current density with layer thickness.
  •  
6.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • Electrochromic solar water splitting using a cathodic WO3 electrocatalyst
  • 2021
  • Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 81
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar-driven water splitting is an emerging technology with high potential to generate fuel cleanly and sustainably. In this work, we show that WO3 can be used as a cathodic electrocatalyst in combination with (Ag,Cu) InGaSe2 solar cell modules to produce hydrogen and provide electrochromic functionality to water splitting devices. This electrochromic effect can be used to monitor the charge state or performance of the catalyst for process control or for controlling the temperature and absorbed heat due to tunable optical modulation of the electrocatalyst. WO3 films coated on Ni foam, using a wide range of different sputtering conditions, were investigated as cathodic electrocatalysts for the water splitting reaction. The solar-to-hydrogen (STH) efficiency of solar-driven water electrolysis was extracted using (Ag,Cu)InGaSe2 solar cell modules with a cell band gap varied in between 1.15 and 1.25 eV with WO3 on Ni foam-based electrolyzers and yielded up to 13% STH efficiency. Electrochromic properties during water electrolysis were characterized for the WO3 films on transparent substrate (indium tin oxide). Transmittance varied between 10% and 78% and the coloration efficiency at a wavelength of 528 nm and the overpotential of 400 mV was 40 cm(2) C-1. Hydrogen ion consumption in ion intercalation for electrochromic and hydrogen gas production for water electrolysis processes was discussed.
  •  
7.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • NiMoV and NiO-based catalysts for efficient solar-driven water splitting using thermally integrated photovoltaics in a scalable approach
  • 2021
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a trimetallic NiMoV catalyst is developed for the hydrogen evolution reaction and characterized with respect to structure, valence, and elemental distribution. The overpotential to drive a 10 mA cm−2 current density is lowered from 94 to 78 mV versus reversible hydrogen electrode by introducing V into NiMo. A scalable stand-alone system for solar-driven water splitting was examined for a laboratory-scale device with 1.6 cm2 photovoltaic (PV) module area to an up-scaled device with 100 cm2 area. The NiMoV cathodic catalyst is combined with a NiO anode in alkaline electrolyzer unit thermally connected to synthesized (Ag,Cu) (In,Ga)Se2 ((A)CIGS) PV modules. Performance of 3- and 4-cell interconnected PV modules, electrolyzer, and hydrogen production of the PV electrolyzer are examined between 25°C and 50°C. The PV-electrolysis device having a 4-cell (A)CIGS under 100 mW cm−2 illumination and NiMoV-NiO electrolyzer shows 9.1% maximum and 8.5% averaged efficiency for 100 h operation.
  •  
8.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • Optimum Band Gap Energy of ((Ag),Cu)(InGa)Se2 Materials for Combination with NiMo–NiO Catalysts for Thermally Integrated Solar-Driven Water Splitting Applications
  • 2019
  • Ingår i: Energies. - : MDPI AG. - 1996-1073. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar-driven water splitting is considered one of the promising future routes to generate fuel in a sustainable way. A carbon-free solar fuel, molecular hydrogen, can here be produced along two different but intimately related routes, photoelectrochemical (PEC) water splitting or photovoltaic electrolysis (PV-electrolysis), where the latter builds on well-established solar cell and electrolysis materials with high efficiency. The PV-electrolysis approach is also possible to construct from an integrated PEC/PV-system avoiding dc-dc converters and enabling heat exchange between the PV and electrolyzer part, to a conventionally wired PV-electrolysis system. In either case, the operating voltage at a certain current needs to be matched with the catalyst system in the electrolysis part. Here, we investigate ((Ag),Cu)(In,Ga)Se-2 ((A)CIGS)-materials with varying Ga-content modules for combination with NiMo-NiO catalysts in alkaline water splitting. The use of (A)CIGS is attractive because of the low cost-to-performance ratio and the possibility to optimize the performance of the system by tuning the band gap of (A)CIGS in contrast to Si technology. The band gap tuning is possible by changing the Ga/(Ga + In) ratio. Optoelectronic properties of the (A)CIGS materials with Ga/(Ga + In) ratios between 0.23 and 0.47 and the voltage and power output from the resulting water splitting modules are reported. Electrolysis is quantified at temperatures between 25 and 60 degrees C, an interval obtainable by varying the thermal heat exchange form a 1-sun illuminated PV module and an electrolyte system. The band gaps of the (A)CIGS thin films were between 1.08 to 1.25 eV and the three-cell module power conversion efficiencies (PCE) ranged from 16.44% with 1.08 eV band gap and 19.04% with 1.17 eV band gap. The highest solar-to-hydrogen (STH) efficiency was 13.33% for the (A)CIGS-NiMo-NiO system with 17.97% module efficiency and electrolysis at 60 degrees C compared to a STH efficiency of 12.98% at 25 degrees C. The increase in STH efficiency with increasing temperature was more notable for lower band gaps as these are closer to the overpotential threshold for performing efficient solar-driven catalysis, while only a modest improvement can be obtained by utilizing thermal exchange for a band gap matched PV-catalysts system. The results show that usage of cost-effective and stable thin film PV materials and earth abundant catalysts can provide STH efficiencies beyond 13% even with PV modules with modest efficiency.
  •  
9.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • The climatic response of thermally integrated photovoltaic-electrolysis water splitting using Si and CIGS combined with acidic and alkaline electrolysis
  • 2020
  • Ingår i: Sustainable Energy & Fuels. - : ROYAL SOC CHEMISTRY. - 2398-4902. ; 4:12, s. 6011-6022
  • Tidskriftsartikel (refereegranskat)abstract
    • The Horizon 2020 project PECSYS aims to build a large area demonstrator for hydrogen production from solar energy via integrated photovoltaic (PV) and electrolysis systems of different types. In this study, Si- and CIGS-based photovoltaics are developed together with three different electrolyzer systems for use in the corresponding integrated devices. The systems are experimentally evaluated and a general model is developed to investigate the hydrogen yield under real climatic conditions for various thin film and silicon PV technologies and electrolyser combinations. PV characteristics using a Si heterojunction (SHJ), thin film CuInxGa1-xSe2, crystalline Si with passivated emitter rear totally diffused and thin film Si are used together with temperature dependent catalyst load curves from both acidic and alkaline approaches. Electrolysis data were collected from (i) a Pt-IrO2-based acidic electrolysis system, and (ii) NiMoW-NiO-based and (iii) Pt-Ni foam-based alkaline electrolysis systems. The calculations were performed for mid-European climate data from Julich, Germany, which will be the installation site. The best systems show an electricity-to-hydrogen conversion efficiency of 74% and over 12% solar-to-hydrogen (STH) efficiencies using both acidic and alkaline approaches and are validated with a smaller lab scale prototype. The results show that the lower power delivered by all the PV technologies under low irradiation is balanced by the lower demand for overpotentials for all the electrolysis approaches at these currents, with more or less retained STH efficiency over the full year if the catalyst area is the same as the PV area for the alkaline approach. The total yield of hydrogen, however, follows the irradiance, where a yearly hydrogen production of over 35 kg can be achieved for a 10 m(2) integrated PV-electrolysis system for several of the PV and electrolyser combinations that also allow a significant (100-fold) reduction in necessary electrolyser area for the acidic approach. Measuring the catalyst systems under intermittent and ramping conditions with different temperatures, a 5% lowering of the yearly hydrogen yield is extracted for some of the catalyst systems while the Pt-Ni foam-based alkaline system showed unaffected or even slightly increased yearly yield under the same conditions.
  •  
10.
  • Bilousov, Oleksandr V., et al. (författare)
  • ALD of phase controlled tin monosulfide thin films
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • Tin monosulfide (SnS) is a promising semiconductor material for low-cost conversion of solar energy, playing the role of absorber layer in photovoltaic devices. SnS is, due to its high optical damping, also an excellent semiconductor candidate for the realization of ultrathin (nanoscale thickness) plasmonic solar cells [1].Here, we present an important step to further control and understand SnS film properties produced using low temperature ALD with Sn(acac)2 and H2S as precursors. We show that the SnS film properties vary over a rather wide range depending on substrate temperature and reaction conditions, and that this is connected to the growth of cubic (π-SnS) and orthorhombic SnS phases. The optical properties of the two polymorphs differ significantly, as demonstrated by spectroscopic ellipsometry [2].1. C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, S. F. Bent, ACS Photonics 3 (3) (2016) 456–463.2. O. V. Bilousov, Y. Ren, T. Törndahl, O. Donzel-Gargand , T. Ericson, C. Platzer-Björkman, M. Edoff, and C. Hägglund, ACS Chemistry of Materials  29 (7) (2017) 2969–2978.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 90
Typ av publikation
tidskriftsartikel (74)
konferensbidrag (13)
doktorsavhandling (3)
Typ av innehåll
refereegranskat (83)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Edoff, Marika, 1965- (88)
Keller, Jan (34)
Törndahl, Tobias, 19 ... (23)
Chen, Wei-Chao (20)
Stolt, Lars (19)
Donzel-Gargand, Oliv ... (17)
visa fler...
Platzer Björkman, Ch ... (13)
Riekehr, Lars (12)
Larsson, Fredrik (12)
Salome, Pedro M. P. (11)
Larsen, Jes K (8)
Hultqvist, Adam (8)
Teixeira, Jennifer P ... (8)
Fernandes, Paulo A. (8)
Hägglund, Carl, 1975 ... (7)
Flandre, Denis (7)
Sopiha, Kostiantyn (6)
Bose, Sourav (6)
Lontchi, Jackson (6)
Wallin, Erik (5)
Edvinsson, Tomas, Pr ... (5)
Cunha, Jose M., V (5)
Teixeira, J. P. (5)
Salomé, P. M. P. (5)
Kovacic, Milan (5)
Krc, Janez (5)
Bayrak Pehlivan, Ilk ... (5)
Oliveira, Kevin (5)
Scragg, Jonathan J., ... (4)
Kubart, Tomas, 1977- (4)
Fernandes, P. A. (4)
Cunha, J. M. V. (4)
Bilousov, Oleksandr ... (4)
Shariati Nilsson, Ni ... (4)
Oliveira, Antonio J. ... (4)
Olsson, Jörgen, 1966 ... (3)
Persson, Clas (3)
Boschloo, Gerrit (3)
Curado, Marco A. (3)
Leitao, J. P. (3)
Lundberg, Olle (3)
Sadewasser, Sascha (3)
Martin, Natalia M. (3)
Stolt, Olof (3)
Ren, Yi (3)
Vermang, Bart (3)
Lopes, Tomas S. (3)
Borme, Jerome (3)
Zhukova, Maria (3)
Silva, Ana G. (3)
visa färre...
Lärosäte
Uppsala universitet (90)
Kungliga Tekniska Högskolan (5)
Chalmers tekniska högskola (4)
Lunds universitet (1)
Språk
Engelska (90)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (53)
Teknik (50)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy