SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edvinsson Tomas Professor) "

Sökning: WFRF:(Edvinsson Tomas Professor)

  • Resultat 1-10 av 96
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Langhammer, David Michael, 1991- (författare)
  • Capturing Air Pollutants : Photochemical Adsorption and Degradation of SO2, NO2 and CO2 on Titanium Dioxide
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Titanium dioxide (TiO2) is a material with many useful properties. It is used most widely as a pigment in white paint, although in technological research it is better known for its ability to catalyze chemical reactions during light absorption. This process is referred to as photocatalysis, where the energy of the light is used to power the chemical reactions. This has enabled several interesting applications of TiO2, where it can for instance be applied to windows or façade walls to make their surfaces self-cleaning. Another implementation that has received much attention lately is artificial photosynthesis, where the light energy is used to transform CO2 and H2O into synthetic fuels. This thesis work contributes to the development of both these applications, although the main ambition is to show how three of the most common ambient air pollutant molecules, SO2, NO2 and CO2, can be captured at the surface of TiO2 by means of photocatalysis. Specifically, infrared (IR) spectroscopy and density functional theory (DFT) has been used as complementary tools of analysis to study the photocatalytic reactions that enable transformation of SO2, NO2 and CO2 into strongly bound sulfates, nitrates and carbonates, respectively. This combined experimental and theoretical approach has enabled a detailed description of how these reactions proceed and has further shown how the fundamental reactivity of the TiO2 surface changes upon light absorption.The work presented herein contributes to an increased understanding of photocatalysis and shows, quite generally, how molecules can be effectively captured at the surface of metal oxides by forming surface-integrated ionic adsorbates.
  •  
2.
  • Ekspong, Joakim, 1987- (författare)
  • Electrocatalysts for sustainable hydrogen energy : disordered and heterogeneous nanomaterials
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the current global greenhouse gas emissions, our remaining carbon budget is depleted in only 7 years. After that, several biophysical systems are predicted to collapse such as the arctic ice, coral reefs and the permafrost, leading to potentially irreversible consequences. Our emissions are strongly correlated to access of energy and even if we are aware of the planetary emergency today, our emissions still continue to grow. Electrical vehicles have the possibility to reduce the emissions in the transportation sector significantly. However, these vehicles are still expensive and impractical for long-distance or heavy transportation. While political actions and technological development are essential to keep prices down, the driving dis- tance can be increased by replacing the batteries for onboard electricity production. In hydrogen fuel cells, electricity is produced by combining hydrogen gas (H2) and oxygen with only water as the by-product and if employed in electrical vehicles, distances of 500 km are enabled with a refueling time in 5 minutes. For other uses than in vehicles, H2 is also promising for large-scale electricity storage and for several industrial processes such as manufacturing CO2-free steel, ammonia and synthetic fuels. However, today most H2 production methods relies on fossil fuels and releases huge amounts of CO2. Electrolysis of water is an alternative production method where H2, along with oxygen are produced from water. To split the water, electricity has to be added and if renewable energy sources are used, the method has zero emissions and is considered most promising for a sustainable hydrogen energy economy. The tech- nique is relatively expensive compared to the fossil fuel-based methods and relies on rare noble metals such as platinum as catalysts for decreasing the required energy to split water. For large scale productions, these metals need to be replaced by more sustainable and abundant catalysts to lower the cost and minimize the environmental impacts. In this thesis we have investigated such candidates for the water splitting reaction but also to some extent for the oxygen reduction reaction in fuel cells. By combining theory and experiments we hope to aid in the development and facilitate a transition to clean hydrogen energy. We find among other things that i) defects in catalytic materials plays a significant role the performance and efficiency, and that ii) heterogeneity influence the adsorption energies of reaction intermediates and hence the catalytic efficiency and iii) while defects are not often studied for electrocatalytic reactions, these may inspire for novel materials in the future. 
  •  
3.
  • Miranda la Hera, Vladimir, 1988- (författare)
  • Surface analysis of low dimensional materials : revealing their electronic properties by advanced spectroscopy
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Low-dimensional materials (0D, 1D, 2D) have been widely used to develop modern miniaturized (micro- and nano-) technology. The use of these materials come from their extraordinary optical, electrical, thermal, and mechanical properties, which are very different from the bulk crystal. To understand low-dimensional materials there is a large interest in studying the surface states of such materials, because the topmost few atomic layers possess an atomic arrangement and electronic structure different from the crystal bulk and hence responsible for many of the novel properties. In surface science, the techniques typically probe the topmost 1-10 nm of surfaces exposed to vacuum. X-ray photoemission spectroscopy (XPS) is the most common surface technique used because of its relatively easy handling and good ability to reveal important information on the surface oxidation states. XPS involves radiation of light that penetrates a sample up to 10 nm depth. Ultraviolet photoemission spectroscopy (UPS) is another surface-sensitive technique, with a slightly lower probing depth, on average about 2.5 nm. For the research in this thesis, a vacuum system has been constructed that contains surface analytical equipment for UPS, Angle Resolved Photospectroscopy and Low-electron energy diffraction. Normally, XPS and UPS are used as individual techniques as they both determine different properties of the material. However, hereby for many applications both are used in conjunction because they complement each other and provide a comprehensive analysis of the samples structure and electronic properties.The aim of this thesis is to present surface analytical measurements carried on low-dimensional materials. Among the materials studied is Graphene, used to as a proof-of-principle experiment in the vacuum system constructed as it has been extensively studied and information can be easily found. The second material was Cu2O thin films that shows different chemical and electronic properties depending on the oxidation level. The third material is nanoporous GaN that exhibit V-pits that modify the properties of the material depending on the hole sizes. The fourth material are trigonal Te nanowires, 1D nanostructures that has a narrow direct bandgap, a high-hole mobility, and a high current density. Finally, an application of the constructed setup is show characterizing the electronic properties of NiFeMo solids. 
  •  
4.
  • Ahmed, Taha, 1984- (författare)
  • Nanostructured ZnO and metal chalcogenide films for solar photocatalysis
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The increasing demand for clean energy and safe water resources has driven the development of efficient and sustainable technologies. Among these technologies, photocatalysis using semiconducting materials has emerged as a promising solution for both solar hydrogen generation and water purification. Low-dimensional ZnO, including nanorods, nanoparticles, and quantum confined particles (so called quantum dots), has demonstrated excellent photocatalytic properties due to their large surface area, high electron mobility, and tunable band gap.The work in this thesis aims to investigate the potential of low-dimensional ZnO alone and in combination with CdS and Fe2O3 for solar hydrogen generation and photocatalytic water purification. The thesis includes a comprehensive analysis of the synthesis, characterization, and optimization of low-dimensional ZnO-based photocatalyst systems for solar hydrogen generation and photocatalytic water purification. Additionally, the thesis will evaluate the performance of the ZnO-based photocatalysts under different experimental conditions, either as photoelectrodes or as distributed particle systems for water purification. The work includes detailed size control of ZnO by itself in dimensions below 10 nm using a hydrothermal method, to provide an increased total surface area and introduce quantum confinement effects that increase the band gap to enable degradation of chemical bonds in a model pollutant in a distributed system for water purification. The work also includes a relatively detailed study of the phonon–phonon and electron–phonon coupling as a function of dimension from 10 nm to 150 nm for ZnO using non-resonant and resonant Raman spectroscopy. Ultimately, the thesis aims to provide insight into the potential of low-dimensional ZnO alone and in combination with other inorganic materials for solar hydrogen generation and photocatalytic water purification and pave the way for the development of efficient and sustainable technologies for clean energy and safe water resources.
  •  
5.
  • Ahmed, Taha, et al. (författare)
  • Phonon–phonon and electron–phonon coupling in nano-dimensional ZnO
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Thermal losses through vibrational coupling are critical bottlenecks limiting several materials classes from reaching their full potential. Altering the phonon–phonon and electron–phonon coupling by controlled suppression of vibrational degrees of freedom through low-dimensionality are promising but still largely unexplored approaches. Here we report a detailed study of the first- and second-order Raman processes as a function of size for low-dimensional ZnO. Wurtzite ZnO nanoparticles were synthesised into 3D frameworks of ZnO crystallites, with tailored crystallite diameters from 10 nm to 150 nm and characterised by electron microscopy, X-ray diffraction and non-resonant and resonant Raman spectroscopy.We present a short derivation of how resonance Raman and the relation between the longitudinal optical (LO) phonons can be utilised to quantify the electron–phonon coupling, its merits, and limitations. Theoretical Raman response using density functional theory is corroborating the experimental data in assigning first- and second-order Raman modes. The Lyddane-Sachs-Teller equation was applied to the measured LO–TO split and revealed no change in the ratio between the static and high-frequency dielectric constant with changing ZnO dimension from 10 nm to 150 nm. The second-order Raman revealed a phonon–phonon coupling that generally increased with particle size and markedly so for differential modes. Resonance Raman showed the fundamental LO mode and the 2nd, 3rd, and 4th overtones. The intensity relation between the fundamental LO mode and its overtones enabled the extraction of the change in electron–phonon coupling via the Huang-Rhys parameter as a function of particle size, which showed an increase with particle size.
  •  
6.
  • Fondell, Mattis, 1984- (författare)
  • Synthesis and Characterisation of Ultra Thin Film Oxides for Energy Applications
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis describes studies of materials which can be exploited for hydrogen production from water and sunlight. The materials investigated are maghemite (γ-Fe2O3), magnetite (Fe3O4) and especially hematite (α-Fe2O3), which is an iron oxide with most promising properties in this field. Hematite has been deposited using Atomic Layer Deposition (ALD) - a thin-film technique facilitating layer-by-layer growth with excellent thickness control and step coverage. The iron oxides were deposited using bis-cyclopentadienyl iron (Fe(Cp)2) or iron pentacarbonyl (Fe(CO)5) in combination with an O2 precursor. Since it is crucial to have good control of the deposition process, the influence of substrate, process temperature, precursor and carrier gas have been investigated systematically. By careful control of these deposition parameters, three polymorphs of iron oxide could be deposited: hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4).The deposited materials were characterized using X-ray Diffraction, Raman and UV-VIS Spectroscopy, and Scanning Electron Microscopy. Hard X-ray Photoelectron Spectroscopy (HAXPES) was also used, since it is a non-destructive, chemically specific, surface sensitive technique – the surface sensitivity resulting from the short mean escape depth of the photoelectrons. The depth probed can be controlled by varying the excitation energy; higher photoelectron energies increasing the inelastic mean-free-path in the material.HAXPES studies of atomic diffusion from F-doped SnO2 substrates showed increased doping levels of Sn, Si and F in the deposited films. Diffusion from the substrate was detected at annealing temperatures between 550 °C and 800 °C. Films annealed in air exhibited improved photocatalytic behavior; a photocurrent of 0.23 mA/cm2 was observed for those films, while the as-deposited hematite films showed no photo-activity whatsoever.The optical properties of low-dimensional hematite were studied in a series of ultra-thin films (thicknesses in the 2-70 nm range). The absorption maxima were shifted to higher energies for films thinner than 20 nm, revealing a different electronic structure in thin films.
  •  
7.
  • Johansson, Fredrik (författare)
  • Core-hole Clock Spectroscopy Using Hard X-rays : Exciting States in Condensed Matter
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is about how electrons move from one place to another, that is charge transfer dynamics. Charge transfer dynamics is an important property governing chemical and physical changes that form the base for many applications such as electronics, optoelectronics and catalysis. The fundamental aspect is how charge transfer manifests in the constituent materials and their interfaces building up these devices. The basic method used is synchrotron radiation based electron spectroscopies.Using core-hole clock spectroscopy it is possible to study dynamic processes in the femtosecond and attosecond regimes - here we study the if the core-excited electron decays back into the core hole (local decays), or if the core excited electron have been tunneled away from the atomic site before the core-hole decays. Spectroscopically we can discern the two situations since one of the processes is photon energy dependent and one is not. Knowledge of the life-time of the core hole, and measuring the probability of the core-excited system decaying one way or the other makes it possible to calculate a charge transfer time. Using hard X-rays to create excited state with deep core-holes allow us to study high kinetic energy Auger electrons, also deep core-holes tend to be short lived, which gives access to short time-scales.Bulk crystals of 2D materials have been used as model systems here owing to their well-known properties. Using those it has been demonstrated that the regime of observable times using the mentioned method can be extended with an order of magnitude compared to previous studies. Our results present themselves on time-scales on par with the atomic unit of time. The highly selective nature of resonant X-ray excitations allows the anisotropic unoccupied electronic structure of bulk 2D crystals to be mapped out, here the example of SnS2 is presented. This shows that this is a direct probe of the unoccupied band structure.With core-hole clock spectroscopy the charge transfer time dependence on relative concentrations of blends between the low band-gap polymer PCPDTBT, with PCBM (functionalized fullerenes). This is a common prototypical system for organic photovoltaics. The charge transfer time decreases with increasing intermixing, up to a point where is starts getting slower, the same trend as the efficiency of solar cell devices made with the same mixing. The method employed here is chemically specific and probes the local surrounding energy landscape at the site of excitation – this is different from other techniques that utilize optical excitations which are non-local in character.The synthetization of bulk heterostructures and thin films, and the disentanglement of core-ionized states are also investigated using spectroscopic and scattering techniques.
  •  
8.
  • Qiu, Zhen (författare)
  • Transition Metal-Based Electrocatalysts for Alkaline Water Splitting and CO2 Reduction
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With excessive usage of fossil fuels and ever-increasing environmental issues, numerous efforts have been devoted to the development of renewable energies for the replacement of traditional fossil fuels to reduce greenhouse gas emission and realize the rapidly growing demand for global energy. Renewable energies, however, often show diurnal and seasonal variations in power output, forming a need for energy storage to meet people’s continuous energy supply. One approach is to use electrolysis and produce a fuel that can be used on demand at a later stage. A full realization of effective electricity-to-fuel conversion, however, is still limited by the large overpotential requirements as well as concerns with the usage of scarce platinum group elements. This thesis presents studies on transition metal-based electrocatalysts for alkaline water splitting and CO2 reduction, which are two technologies to produce a chemical fuel from renewable electricity. Our aim is to develop efficient, inexpensive, and robust electrocatalysts based on earth-abundant elements with high energy conversion efficiencies.In the first part, we develop and investigate three different electrocatalysts intended for high-performance electrocatalysis of water; NiO nanoflakes (NFs) with tuneable surface morphologies, Fe doped NiO nanosheets (NSs), and self-optimized NiFe layered double hydroxide (LDH) NSs. The self-assembled NiO NFs show drastically different performance for the oxygen evolution reaction (OER). Besides the morphology effect on the catalytic property, the presence of Fe is also functional to improve the catalytic activity for both OER and hydrogen evolution reaction (HER). The NiFe LDH NSs form the most effective system for the overall catalytic performance and is dramatically improved via a dynamic self-optimization, especially for HER, where the overpotential decreases from 206 mV to 59 mV at 10 mA cm-2. In order to get insight into the interfacial reaction processes, a variety of techniques were performed to explore the underlying reasons for the catalytic improvement. Ex-situ X-ray photoelectron spectroscopy, transmission electron microscope and in-situ Raman spectroscopy were utilized to characterize and understand the oxidations states, the crystallinity and the active phases. Electrochemical impedance spectroscopy was applied to investigate the dominating reaction mechanisms during high-performance and stable electrocatalysis.In the second part, dynamically formed CuInO2 nanoparticles were demonstrated to be high-performance electrocatalysts for CO2 reduction. In-situ Raman spectroscopy was utilized to reveal and understand the formation of CuInO2 nanoparticles based on the Cu2O pre-catalyst onto an interlayer of indium tin oxide under the electrochemical reaction. Density function theory calculation and ex-situ X-ray diffraction further prove the formation of CuInO2 nanoparticles during vigorous catalysis. The findings give important clues on how Cu-based electrocatalysts can be formed into more active materials and can provide inspiration for other Cu-based intermetallic oxides for high-efficiency CO2 reduction.
  •  
9.
  • Thyr, Jakob, 1979- (författare)
  • Low dimensional Zinc- and Copper Oxides and their Electronic, Vibrational and Photocatalytic Properties
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Pollution of water resources is a growing problem in the world and this has drawn the attention to photocatalysis, which is an emerging technology for water purification. In this thesis, low dimensional zinc oxide and copper oxides, which are promising photocatalytic materials, have been studied. In the initial work, an approach for determining the crystal orientation in ZnO nanomaterials was developed based on polarized Raman spectroscopy. The approach was extended to non-polarized Raman spectroscopy for convenient crystal orientation determination. The results were corroborated by density functional theory (DFT) calculations providing a full vibrational mode analysis of ZnO, including higher-order Raman scattering. Photocatalyst materials based on both ZnO and copper oxides were synthesized, starting with visible light absorbing Cu2O prepared by low temperature thermal oxidation of flat and 3D structured Cu-foils. Defect induced Raman scattering revealed Raman activity in modes that are only IR active or optically silent in pristine Cu2O, with mode assignments supported by DFT calculations. Experiment with solar light illuminated Cu2O showed efficient degradation of organic water-soluble molecules and degradation rates could be further increased by 3D structuring into nanopillars. With the aim of creating a combined photocatalyst that use favourable properties from several materials, nanoparticles of ZnO were synthesized and deposited onto Cu2O, Cu4O3 and CuO. ZnO of sufficiently small size exhibit quantum confinement, which allowed for tuning of the electronic and optical properties of ZnO and this was utilized for energy level alignment in heterojunctions with copper oxides. The heterojunctions were shown to facilitate charge transfer which improved the photocatalytic properties of the dual catalysts compared to the single components. The quantum confinement effects in ZnO nanoparticles were further investigated by more detailed electrochemical measurements. The main finding was that quantum confinement results in a large decrease in the available electronic density of states which has clear implications on the capacitance and photon absorption in the material. Raman spectroscopy has been a central tool in all work, and the thesis ends with a study that goes through and explain spurious Raman signals. The contribution shows how to identify and avoid spectral artefacts and other light generating processes that compete with the Raman signal and guide the acquisition of good quality spectra.
  •  
10.
  • Ahmed, Taha, et al. (författare)
  • Optical Quantum Confinement in Ultrasmall ZnO and the Effect of Size on Their Photocatalytic Activity
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:11, s. 6395-6404
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc oxide is a well-known metal oxide semiconductor with a wide direct band gap that offers a promising alternative to titanium oxide in photocatalytic applications. ZnO is studied here as quantum dots (QDs) in colloidal suspensions, where ultrasmall nanoparticles of ZnO show optical quantum confinement with a band gap opening for particles below 9 nm in diameter from the shift of the band edge energies. The optical properties of growing ZnO QDs are determined with Tauc analysis, and a system of QDs for the treatment and degradation of distributed threats is analyzed using an organic probe molecule, methylene blue, whose UV/vis spectrum is analyzed in some detail. The effect of optical properties of the QDs and the kinetics of dye degradation are quantified for low-dimensional ZnO materials in the range of 3-8 nm and show a substantial increase in photocatalytic activity compared to larger ZnO particles. This is attributed to a combined effect from the increased surface area as well as a quantum confinement effect that goes beyond the increased surface area. The results show a significantly higher photocatalytic activity for the QDs between 3 and 6 nm with a complete decolorization of the organic probe molecule, while QDs from 6 nm and upward in diameter show signs of competing reduction reactions. Our study shows that ultrasmall ZnO particles have a reactivity beyond that which is expected because of their increased surface area and also demonstrates size-dependent reaction pathways, which introduces the possibility for size-selective catalysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 96
Typ av publikation
tidskriftsartikel (58)
doktorsavhandling (12)
konferensbidrag (9)
annan publikation (6)
bokkapitel (6)
forskningsöversikt (4)
visa fler...
samlingsverk (redaktörskap) (1)
konstnärligt arbete (1)
visa färre...
Typ av innehåll
refereegranskat (70)
övrigt vetenskapligt/konstnärligt (26)
Författare/redaktör
Edvinsson, Tomas, Pr ... (89)
Thyr, Jakob, 1979- (15)
Bayrak Pehlivan, Ilk ... (14)
Niklasson, Gunnar, 1 ... (8)
Qiu, Zhen (7)
Qiu, Zhen, 1988- (7)
visa fler...
Pazoki, Meysam (6)
Boschloo, Gerrit (6)
Freitag, Marina (6)
Michaels, Hannes (6)
Stolt, Lars (5)
Edoff, Marika, 1965- (5)
Österlund, Lars, 196 ... (5)
Hagfeldt, Anders (4)
Ma, Yue (4)
Niklasson, Gunnar A. ... (4)
Benesperi, Iacopo (4)
Araujo, Rafael (3)
Ahmed, Taha (3)
Valvo, Mario (3)
Tian, Haining, 1983- (3)
Atak, Gamze (3)
Pavone, Michele (3)
Probert, Michael R. (3)
Muñoz-García, Ana Be ... (3)
Dürr, Robin N. (3)
Haas, S. (2)
Sá, Jacinto (2)
Abdellah, Mohamed (2)
Hammarström, Leif, 1 ... (2)
Imani, Roghayeh (2)
Göthelid, Mats (2)
Johnsson, Mats, Prof ... (2)
Zhu, Jiefang (2)
Ström, Petter (2)
Zakeeruddin, Shaik M ... (2)
Xie, Ling, 1982- (2)
Edvinsson, Tomas, 19 ... (2)
Johansson, Malin B., ... (2)
Granqvist, Claes Gör ... (2)
Montero Amenedo, Jos ... (2)
Maltoni, Pierfrances ... (2)
Wang, JunXin (2)
Stolt, L. (2)
Kamalakar, M. Venkat ... (2)
Saygili, Yasemin (2)
Kim, Byeong Jo (2)
Wågberg, Thomas, Pro ... (2)
Edvinsson, Tomas, Pr ... (2)
Edvinsson, Tomas, Do ... (2)
visa färre...
Lärosäte
Uppsala universitet (93)
Kungliga Tekniska Högskolan (5)
Stockholms universitet (4)
Umeå universitet (3)
Lunds universitet (2)
Linköpings universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (96)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (72)
Teknik (33)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy