SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egecioglu Emil 1977) "

Sökning: WFRF:(Egecioglu Emil 1977)

  • Resultat 1-10 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice.
  • 2006
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 290:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that growth hormone (GH) overexpression in the brain increased food intake, accompanied with increased hypothalamic agouti-related protein (AgRP) expression. Ghrelin, which stimulates both appetite and GH secretion, was injected intracerebroventricularly to GHR-/- and littermate control (+/+) mice to determine whether ghrelin's acute effects on appetite are dependent on GHR signaling. GHR-/- mice were also analyzed with respect to serum levels of lipoproteins, apolipoprotein (apo)B, leptin, glucose, and insulin as well as body composition. Central injection of ghrelin into the third dorsal ventricle increased food consumption in +/+ mice, whereas no change was observed in GHR-/- mice. After ghrelin injection, AgRP mRNA expression in the hypothalamus was higher in +/+ littermates than in GHR-/- mice, indicating a possible importance of AgRP in the GHR-mediated effect of ghrelin. Compared with controls, GHR-/- mice had increased food intake, leptin levels, and total and intra-abdominal fat mass per body weight and deceased lean mass. Moreover, serum levels of triglycerides, LDL and HDL cholesterol, and apoB, as well as glucose and insulin levels were lower in the GHR-/- mice. In summary, ghrelin's acute central action to increase food intake requires functionally intact GHR signaling. Long-term GHR deficiency in mice is associated with high plasma leptin levels, obesity, and increased food intake but a marked decrease in all lipoprotein fractions.
  •  
2.
  • Bjursell, Mikael, 1977, et al. (författare)
  • Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice
  • 2008
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 294:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to investigate the short- and long-term effects of a high-fat Western diet (WD) on intake, storage, expenditure, and fecal loss of energy as well as effects on locomotor activity and thermogenesis. WD for only 24 h resulted in a marked physiological shift in energy homeostasis, including increased body weight gain, body fat, and energy expenditure (EE) but an acutely lowered locomotor activity. The acute reduction in locomotor activity was observed after only 3–5 h on WD. The energy intake and energy absorption were increased during the first 24 h, lower after 72 h, and normalized between 7 and 14 days on WD compared with mice given chow diet. Core body temperature and EE was increased between 48 and 72 h but normalized after 21 days on WD. These changes paralleled plasma T3 levels and uncoupling protein-1 expression in brown adipose tissue. After 21 days of WD, energy intake and absorption, EE, and body temperature were normalized. In contrast, the locomotor activity was reduced and body weight gain was increased over the entire 21-day study period on WD. Calculations based on the correlation between locomotor activity and EE in 2-h intervals at days 21–23 indicated that a large portion of the higher body weight gain in the WD group could be attributed to the reduced locomotor activity. In summary, an acute and persisting decrease in locomotor activity is most important for the effect of WD on body weight gain and obesity in mice.
  •  
3.
  •  
4.
  • Bohlooly-Yeganeh, Mohammad, 1966, et al. (författare)
  • Growth hormone overexpression in the central nervous system results in hyperphagia-induced obesity associated with insulin resistance and dyslipidemia.
  • 2005
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 54:1, s. 51-62
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that peripherally administered growth hormone (GH) results in decreased body fat mass. However, GH-deficient patients increase their food intake when substituted with GH, suggesting that GH also has an appetite stimulating effect. Transgenic mice with an overexpression of bovine GH in the central nervous system (CNS) were created to investigate the role of GH in CNS. This study shows that overexpression of GH in the CNS differentiates the effect of GH on body fat mass from that on appetite. The transgenic mice were not GH-deficient but were obese and showed increased food intake as well as increased hypothalamic expression of agouti-related protein and neuropeptide Y. GH also had an acute effect on food intake following intracerebroventricular injection of C57BL/6 mice. The transgenic mice were severely hyperinsulinemic and showed a marked hyperplasia of the islets of Langerhans. In addition, the transgenic mice displayed alterations in serum lipid and lipoprotein levels and hepatic gene expression. In conclusion, GH overexpression in the CNS results in hyperphagia-induced obesity indicating a dual effect of GH with a central stimulation of appetite and a peripheral lipolytic effect.
  •  
5.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Central NMU signaling in body weight and energy balance regulation: evidence from NMUR2 deletion and chronic central NMU treatment in mice.
  • 2009
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 297:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the role of the central neuromedin U (NMU) signaling system in body weight and energy balance regulation, we examined the effects of long-term intracerebroventricular (icv) infusion of NMU in C57Bl/6 mice and in mice lacking the gene encoding NMU receptor 2. In diet-induced obese male and female C57BL/6 mice, icv infusion of NMU (8 microg x day(-1) x mouse(-1)) for 7 days decreased body weight and total energy intake compared with vehicle treatment. However, these parameters were unaffected by NMU treatment in lean male and female C57BL/6 mice fed a standard diet. In addition, female (but not male) NMUR2-null mice had increased body weight and body fat mass when fed a high-fat diet but lacked a clear body weight phenotype when fed a standard diet compared with wild-type littermates. Furthermore, female (but not male) NMUR2-null mice fed a high-fat diet were protected from central NMU-induced body weight loss compared with littermate wild-type mice. Thus, we provide the first evidence that long-term central NMU treatment reduces body weight, food intake, and adiposity and that central NMUR2 signaling is required for these effects in female but not male mice.
  •  
6.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Ghrelin increases intake of rewarding food in rodents
  • 2010
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 15:3, s. 304-311
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS-R1A) and rats treated peripherally with a GHS-R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS-R1A knockout mice. Acute bilateral intra-VTA administration of ghrelin increased 1-hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA-lesioned rats had normal intracerebroventricular ghrelin-induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS-R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.
  •  
7.
  • Alvarez-Crespo, Mayte, 1980, et al. (författare)
  • The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence
  • 2012
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available.
  •  
8.
  • Andersson, Niklas, 1970, et al. (författare)
  • Investigation of central versus peripheral effects of estradiol in ovariectomized mice
  • 2005
  • Ingår i: J Endocrinol. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 187:2, s. 303-9
  • Tidskriftsartikel (refereegranskat)abstract
    • It is generally believed that estrogens exert their bone sparing effects directly on the cells within the bone compartment. The aim of the present study was to investigate if central mechanisms might be involved in the bone sparing effect of estrogens. The dose-response of central (i.c.v) 17beta-estradiol (E2) administration was compared with that of peripheral (s.c.) administration in ovariectomized (ovx) mice. The dose-response curves for central and peripheral E2 administration did not differ for any of the studied estrogen-responsive tissues, indicating that these effects were mainly peripheral. In addition, ovx mice were treated with E2 and/or the peripheral estrogen receptor antagonist ICI 182,780. ICI 182,780 attenuated most of the estrogenic response regarding uterus weight, retroperitoneal fat weight, cortical BMC and trabecular bone mineral content (P<0.05). These findings support the notion that the primary target tissue that mediates the effect of E2 on bone is peripheral and not central.
  •  
9.
  • de la Cour, Charlotta, et al. (författare)
  • Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomised mice.
  • 2005
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 54:7, s. 907-13
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: The gastric hormone ghrelin has been reported to stimulate food intake, increase weight gain, and cause obesity but its precise physiological role remains unclear. We investigated the long term effects of gastrectomy evoked ghrelin deficiency and of daily ghrelin injections on daily food intake, body weight, fat mass, lean body mass, and bone mass in mice. METHODS: Ghrelin was given by subcutaneous injections (12 nmol/mouse once daily) for eight weeks to young female mice subjected to gastrectomy or sham operation one week previously. RESULTS: Gastrectomy reduced plasma concentrations of total ghrelin (octanoylated and des-octanoylated) and active (octanoylated) ghrelin by approximately 80%. Immediately after injection of ghrelin, the plasma concentration was supraphysiological and was still elevated 16 hours later. Daily food intake was not affected by either gastrectomy or ghrelin treatment. The effect of ghrelin on meal initiation was not studied. At the end point of the study, mean body weight was 15% lower in gastrectomised mice than in sham operated mice (p<0.001); daily ghrelin injections for eight weeks partially prevented this weight loss. In sham operated mice, ghrelin had no effect on body weight. The weight of fat was reduced in gastrectomised mice (-30%; p<0.01). This effect was reversed by ghrelin, enhancing the weight of fat in sham operated mice also (+20%; p<0.05). Gastrectomy reduced lean body mass (-10%; p<0.01) and bone mass (-20%; p<0.001) compared with sham operated mice. Ghrelin replacement prevented the gastrectomy induced decrease in lean body mass but did not affect bone. In sham operated mice, ghrelin affected neither of these two parameters. CONCLUSIONS: Ghrelin replacement partially reversed the gastrectomy induced reduction in body weight, lean body mass, and body fat but not in bone mass. In sham operated mice, ghrelin only increased fat mass. Our results suggest that ghrelin is mainly concerned with the control of fat metabolism and that ghrelin replacement therapy may alleviate the weight loss associated with gastrectomy.
  •  
10.
  • Dickson, Suzanne L., 1966, et al. (författare)
  • Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.
  • 2010
  • Ingår i: Neuroscience. - : Elsevier BV. - 1873-7544 .- 0306-4522. ; 171:4, s. 1180-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotinic cholinergic receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc), partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine but not by hexamethonium, a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A (GHS-R1A), was found to co-localize with choline acetyltransferase (ChAT), a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine i.p. treatment decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 61
Typ av publikation
tidskriftsartikel (58)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (61)
Författare/redaktör
Egecioglu, Emil, 197 ... (61)
Dickson, Suzanne L., ... (25)
Jerlhag, Elisabeth, ... (19)
Engel, Jörgen, 1942 (17)
Billig, Håkan, 1955 (16)
Shao, Linus Ruijin, ... (16)
visa fler...
Fernandez-Rodriguez, ... (11)
Hansson, Caroline, 1 ... (9)
Bohlooly-Yeganeh, Mo ... (8)
Ohlsson, Claes, 1965 (7)
Skibicka, Karolina P (7)
Taube, Magdalena (6)
Bjursell, Mikael, 19 ... (6)
Feng, Yi (5)
Jansson, John-Olov, ... (5)
Karlsson-Lindahl, Li ... (5)
Stener-Victorin, Eli ... (4)
Alvarez-Crespo, Mayt ... (4)
Oscarsson, Jan, 1960 (4)
Andersson, Niklas, 1 ... (4)
Palsdottir, Vilborg, ... (4)
Haage, David (4)
Landgren, Sara, 1980 (3)
Ling, Charlotte (3)
Thurin-Kjellberg, An ... (3)
Bergh, Christina, 19 ... (3)
Svensson, Lennart (3)
Schéle, Erik, 1980 (3)
Westberg, Lars, 1973 (3)
Bergström, Göran, 19 ... (2)
Lindqvist, Andreas (2)
Schmidt, Linnéa, 198 ... (2)
Norström, Anders (2)
Adan, Roger A H (2)
Olsson, Bob, 1969 (2)
Li, Xin (2)
Brännström, Mats, 19 ... (2)
Andersson, Daniel (2)
Zhu, Changlian, 1964 (2)
Kopchick, John J (2)
Molnar, C. S. (2)
Hrabovszky, E. (2)
Liposits, Z. (2)
Håkanson, Rolf (2)
Sjögren, Klara, 1970 (2)
Anesten, Fredrik (2)
Vallöf, Daniel, 1988 (2)
Benrick, Anna, 1979- (2)
Friberg, P. Anders, ... (2)
Gerdin, Anna-Karin (2)
visa färre...
Lärosäte
Göteborgs universitet (61)
Lunds universitet (9)
Umeå universitet (5)
Chalmers tekniska högskola (5)
Karolinska Institutet (4)
Uppsala universitet (2)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (61)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (54)
Naturvetenskap (4)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy