SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egmond Maarten R.) "

Sökning: WFRF:(Egmond Maarten R.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berggren, Kristina, et al. (författare)
  • Substitutions of surface amino acid residues of cutinase probed by aqueous two-phase partitioning
  • 2000
  • Ingår i: BBA - Protein Structure and Molecular Enzymology. - 0167-4838. ; 1481:2, s. 317-327
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface properties of a protein are often crucial for recognition and interaction with other molecules. Important functional residues can be identified by mutational analysis. There is a need for rapid methods to study protein surfaces and surface changes due to mutations. Partitioning in aqueous two-phase systems has the potential to be used in this respect since protein partitioning depends on the surface properties of the protein. The influence of surface-exposed amino acid residues in protein partitioning has been studied with cutinase variants, which differed in one or several amino acid residues as a result of site-directed mutagenesis. The solvent accessibility of the mutated residues was determined with a computer program, Graphical Representation and Analysis of Surface Properties. The aqueous two-phase system was composed of dextran and a random copolymer of ethylene oxide and propylene oxide. It was shown, for the first time, to what extent surface-exposed amino acid residues influence the partition coefficient in an aqueous two-phase system. The effect on partitioning could be described only taking into account solvent accessibility and type of residue substitution. The results demonstrate that the system can be used to detect conformational changes in mutant proteins since the expected effect on partitioning due to a mutation can be calculated. The aqueous two-phase system used here does indeed provide a rapid and convenient method to study protein surfaces and slight surface changes due to mutations.
  •  
2.
  • Nilsson, Anna, et al. (författare)
  • Cutinase-peptide fusions in thermoseparating aqueous two-phase systems - Prediction of partitioning and enhanced tag efficiency by detergent addition
  • 2002
  • Ingår i: Journal of Chromatography A. - 0021-9673. ; 946:1-2, s. 141-155
  • Tidskriftsartikel (refereegranskat)abstract
    • It is of increasing importance to develop efficient purification methods for recombinant proteins where the number of steps can be minimised. The aim has been to establish a method for predicting the partitioning of the wild-type target protein in an aqueous two-phase system, and with this as basis, develop fusion tags and optimise the phase system for enhanced partitioning of the target protein. The surface of the lipolytic enzyme cutinase from Fusarium solani pisi was investigated with a computer program, Graphical Representation and Analysis of Surface Properties (GRASP). The accessible surface areas for the different amino acid residues were used together with peptide partitioning data to calculate the partition coefficient for the protein. The separation system was composed of a thermoseparating random copolymer of ethylene oxide and propylene oxide, Breox PAG 50A 1000, as top phase forming polymer and a hydroxypropyl starch polymer, Reppal PES 200, as bottom phase polymer. The calculated partition coefficient for the wild-type protein (K=1.0) agreed reasonably well with the experimentally determined value (K=0.85). Genetic engineering was used to construct fusion proteins expressed in Saccharomyces cerevisiae based on cutinase and peptide tags containing tryptophan, to enhance the partitioning in aqueous two-phase systems. The partitioning of the cutinase constructs could qualitatively be predicted from peptide partitioning data, i.e. the trends in partitioning could be predicted. A spacer peptide introduced between protein and tag increased the partitioning of the protein towards the ethylene oxide-propylene oxide (EOPO) copolymer top phase. The aqueous two-phase system was modified by addition of detergent to increase the partitioning of the cutinase variants towards the EOPO copolymer phase. Triton and a series of C12En detergents selectively increased the partitioning of cutinase constructs with (WP)4-based tags up to 14 times compared to wild-type cutinase. The protein partition could almost quantitatively be predicted from the peptide partition data.
  •  
3.
  • Nilsson, Anna, et al. (författare)
  • Partitioning of peptide-tagged proteins in aqueous two-phase systems using hydrophobically modified micelle-forming thermoseparating polymer
  • 2002
  • Ingår i: Biochimica et Biophysica Acta - Proteins and Proteomics. - 1570-9639. ; 1601:2, s. 138-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic engineering has been used to construct hydrophobically modified fusion proteins of cutinase from Fusarium solani pisi and tryptophan-containing peptides. The aim was to enhance the partitioning of the tagged protein in a novel aqueous two-phase system formed by only one water-soluble polymer. The system was based on a hydrophobically modified random copolymer of ethylene oxide (EO) and propylene oxide (PO) units, HM-EOPO, with myristyl groups (C14H29) at both ends. The HM-EOPO polymer is strongly self-associating and has a lower critical solution temperature (cloud point) at 12oC in water. At temperatures above the cloud point a two-phase system is formed with a water top phase and a polymer-enriched bottom phase. By adding a few percent of hydroxypropyl starch polymer, Reppal PES 200, to the system, it is possible to change the densities of the phases so the HM-EOPO-enriched phase becomes the top phase and Reppal-enriched phase is the bottom phase. Tryptophan-based peptides strongly preferred the HM-EOPO rich phase. The partitioning was increased with increasing length of the peptides. Full effect of the tag as calculated from peptide partitioning data was not found in the protein partitioning. When a short spacer was introduced between the protein and the tag the partitioning was increased, indicating a better exposure to the hydrophobic core of the polymer micelle. By adding a hydrophilic spacer between the protein and trp-tag, it was possible to increase the partitioning of cutinase 10 times compared to wild-type cutinase partitioning. By lowering the pH of the system and addition of NaCl, the partitioning of tagged protein was further increased towards the HM-EOPO phase. After isolating the HM-EOPO phase, the temperature was increased and the protein was back-extracted from the HM-EOPO phase to a fresh water phase.
  •  
4.
  • Wieczorek, Birgit, et al. (författare)
  • Covalent anchoring of a racemization catalyst to CALB-beads : towards dual immobilization of DKR catalysts
  • 2011
  • Ingår i: Tetrahedron Letters. - : Elsevier BV. - 0040-4039 .- 1359-8562. ; 52:14, s. 1601-1604
  • Tidskriftsartikel (refereegranskat)abstract
    • The preparation of a heterogeneous bifunctional catalytic system, combining the catalytic properties of an organometallic catalyst (racemization) with those of an enzyme (enantioselective acylation) is described. A novel ruthenium phosphonate inhibitor was synthesized and covalently anchored to a lipase immobilized on a solid support (CALB, Novozym® 435). The immobilized bifunctional catalytic system showed activity in both racemization of (S)-1-phenylethanol and selective acylation of 1-phenylethanol.
  •  
5.
  • Wieczorek, Birgit, et al. (författare)
  • Site-Specific Covalent Immobilization of a Racemization Catalyst onto Lipase-containing Beads
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The synthesis and application of the novel heterogeneous bifunctional catalyst CALB-5 as a racemization and resolution catalyst for the dynamic kinetic resolution is described. The semisynthetic ruthenium lipase hybrid CALB-5 was obtained by inhibiting CALB beads with the novel ruthenium phosphonate complex 5 possessing a lipase active site-directed phosphonate group. By partially inhibiting the lipase beads with 5, a bifunctional catalytic system was obtained. Racemization, by the Ru-catalytic site, gave 0% ee after 24 h, and the kinetic resolution, enzymatic acylation by the uninhibited CALB sites, gave 28% conversion of 1-phenylethanol after 3 h with >99% ee of the acetylated product. A dynamic kinetic resolution experiment of (S)-1-phenylethanol with CALB-5 gave the acylated (R)-product in 18% yield and with >99% ee.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy