SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehammer Andrea) "

Sökning: WFRF:(Ehammer Andrea)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tagesson, Torbern, et al. (författare)
  • Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa
  • 2015
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 1873-2305 .- 0167-8809. ; 205, s. 15-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The main aim of this paper is to study land-atmosphere exchange of carbon dioxide (CO2) for semi-arid savanna ecosystems of the Sahel region and its response to climatic and environmental change. A subsidiary aim is to study and quantify the seasonal dynamics in light use efficiency (epsilon) being a key variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature, confirming that care should be taken before applying temperature response curves for hot dry semi-arid regions when partitioning NEE into gross primary productivity (GPP) and ecosystem respiration (R-eco). Partitioning was instead done using light response curves. The values of epsilon ranged between 0.02 g carbon (C) MJ(-1) for the dry season and 2.27 g C MJ(-1) for the peak of the rainy season, and its seasonal dynamics was governed by vegetation phenology, photosynthetically active radiation, soil moisture and vapor pressure deficit (VPD). The CO2 exchange fluxes were very high in comparison to other semi-arid savanna sites; half-hourly GPP and R-eco peaked at -43 mu mol CO2 m(-2) s(-1) and 20 mu mol CO2 m(-2) s(-1), and daily GPP and R-eco peaked at -15 g C m(-2) and 12 g C m(-2), respectively. Possible explanations for the high CO2 fluxes are a high fraction of C4 species, alleviated water stress conditions, and a strong grazing pressure that results in compensatory growth and fertilization effects. We also conclude that vegetation phenology, soil moisture, radiation, VPD and temperature were major components in determining the seasonal dynamics of CO2 fluxes. Despite the height of the peak of the growing season CO2 fluxes, the annual C budget (average NEE: -271 g C m(-2)) were similar to that in other semi-arid ecosystems because the short rainy season resulted in a short growing season. Global circulation models project a decrease in rainfall, an increase in temperature and a shorter growing season for the western Sahel region, and the productivity and the sink function of this semi-arid ecosystem may thus be lower in the future. (C) 2015 Elsevier B.V. All rights reserved.
  •  
2.
  • Tagesson, Torbern, et al. (författare)
  • Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:1, s. 250-264
  • Tidskriftsartikel (refereegranskat)abstract
    • The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (similar to 3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of similar to-7.5g Cm(-2)day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models.
  •  
3.
  • Tagesson, Torbern, et al. (författare)
  • Spatiotemporal variability in carbon exchange fluxes across the Sahel
  • 2016
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 226-227, s. 108-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Semi-arid regions play an increasingly important role as a sink within the global carbon (C) cycle and is the main biome driving inter-annual variability in carbon dioxide (CO2) uptake by terrestrial ecosystems. This indicates the need for detailed studies of spatiotemporal variability in C cycling for semi-arid ecosystems. We have synthesized data on the land-atmosphere exchange of CO2 measured with the eddy covariance technique from the six existing sites across the Sahel, one of the largest semi-arid regions in the world. The overall aim of the study is to analyse and quantify the spatiotemporal variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences. Spatial and inter-annual variability in the C flux processes indicated a strong resilience to dry conditions, and were correlated with phenological metrics. Gross primary productivity (GPP) was the most important flux process affecting the sink strength, and diurnal variability in GPP was regulated by incoming radiation, whereas seasonal dynamics was closely coupled with phenology, and soil water content. Diurnal variability in ecosystem respiration was regulated by GPP, whereas seasonal variability was strongly coupled to phenology and GPP. A budget for the entire Sahel indicated a strong C sink mitigating the global anthropogenic C emissions. Global circulation models project an increase in temperature, whereas rainfall is projected to decrease for western Sahel and increase for the eastern part, indicating that the C sink will possibly decrease and increase for the western and eastern Sahel, respectively.
  •  
4.
  • Tagesson, Torbern, et al. (författare)
  • Very high CO2 exchange fluxes at the peak of the rainy season in a West African grazed semi-arid savanna ecosystem
  • 2016
  • Ingår i: Geografisk Tidsskrift. - : Informa UK Limited. - 0016-7223. ; 116:2, s. 93-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Africa is a sink of carbon, but there are large gaps in our knowledge regarding the CO2 exchange fluxes for many African ecosystems. Here, we analyse multi-annual eddy covariance data of CO2 exchange fluxes for a grazed Sahelian semi-arid savanna ecosystem in Senegal, West Africa. The aim of the study is to investigate the high CO2 exchange fluxes measured at the peak of the rainy season at the Dahra field site: gross primary productivity and ecosystem respiration peaked at values up to −48 μmol CO2 m−2 s−1 and 20 μmol CO2 m−2 s−1, respectively. Possible explanations for such high fluxes include a combination of moderately dense herbaceous C4 ground vegetation, high soil nutrient availability and a grazing pressure increasing the fluxes. Even though the peak net CO2 uptake was high, the annual budget of −229 ± 7 ± 49 g C m−2 y−1 (±random errors ± systematic errors) is comparable to that of other semi-arid savanna sites due the short length of the rainy season. An inter-comparison between the open-path and a closed-path infrared sensor indicated no systematic errors related to the instrumentation. An uncertainty analysis of long-term NEE budgets indicated that corrections for air density fluctuations were the largest error source (11.3% out of 24.3% uncertainty). Soil organic carbon data indicated a substantial increase in the soil organic carbon pool for the uppermost.20 m. These findings have large implications for the perception of the carbon sink/source of Sahelian ecosystems and its response to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy