SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eickemeyer Felix T.) "

Sökning: WFRF:(Eickemeyer Felix T.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alharbi, Essa A., et al. (författare)
  • Formation of High-Performance Multi-Cation Halide Perovskites Photovoltaics by delta-CsPbI3/delta-RbPbI3 Seed-Assisted Heterogeneous Nucleation
  • 2021
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 11:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of perovskite solar cells is highly dependent on the fabrication method; thus, controlling the growth mechanism of perovskite crystals is a promising way towards increasing their efficiency and stability. Herein, a multi-cation halide composition of perovskite solar cells is engineered via the two-step sequential deposition method. Strikingly, it is found that adding mixtures of 1D polymorphs of orthorhombic delta-RbPbI3 and delta-CsPbI3 to the PbI2 precursor solution induces the formation of porous mesostructured hexagonal films. This porosity greatly facilitates the heterogeneous nucleation and the penetration of FA (formamidinium)/MA (methylammonium) cations within the PbI2 film. Thus, the subsequent conversion of PbI2 into the desired multication cubic alpha-structure by exposing it to a solution of formamidinium methylammonium halides is greatly enhanced. During the conversion step, the delta-CsPbI3 also is fully integrated into the 3D mixed cation perovskite lattice, which exhibits high crystallinity and superior optoelectronic properties. The champion device shows a power conversion efficiency (PCE) over 22%. Furthermore, these devices exhibit enhanced operational stability, with the best device retaining more than 90% of its initial value of PCE under 1 Sun illumination with maximum power point tracking for 400 h.
  •  
2.
  • Jeong, Jaeki, et al. (författare)
  • Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
  • 2021
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 592:7854, s. 381-385
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites of the general formula ABX(3)-where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics(1-5). Among a large number of compositions investigated, the cubic a-phase of formamidinium lead triiodide (FAPbI(3)) hasemerged as the most promising semiconductor for highly efficient and stable perovskite solar cells(6-9), and maximizing the performance of this material in such devices is of vital importance for the perovskite researchcommunity. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO-) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. Theresulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.
  •  
3.
  • Kim, Minjin, et al. (författare)
  • Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375:6578, s. 302-306
  • Tidskriftsartikel (refereegranskat)abstract
    • Improvements to perovskite solar cells (PSCs) have focused on increasing their power conversion efficiency (PCE) and operational stability and maintaining high performance upon scale-up to module sizes. We report that replacing the commonly used mesoporous-titanium dioxide electron transport layer (ETL) with a thin layer of polyacrylic acid-stabilized tin(IV) oxide quantum dots (paa-QD-SnO2) on the compact-titanium dioxide enhanced light capture and largely suppressed nonradiative recombination at the ETL-perovskite interface. The use of paa-QD-SnO2 as electron-selective contact enabled PSCs (0.08 square centimeters) with a PCE of 25.7% (certified 25.4%) and high operational stability and facilitated the scale-up of the PSCs to larger areas. PCEs of 23.3, 21.7, and 20.6% were achieved for PSCs with active areas of 1, 20, and 64 square centimeters, respectively.
  •  
4.
  • Krishna, Anurag, et al. (författare)
  • Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
  • 2021
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 14:10, s. 5552-5562
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic acid. The solar cells exhibited high operational stability (maximum powering point tracking at one sun illumination) with a stabilized T-S80 (the time over which the device efficiency reduces to 80% after initial burn-in) of approximate to 5950 h at 40 degrees C and a stabilized power conversion efficiency (PCE) over 23%. The origin of high device stability and performance is correlated to the nano/sub-nanoscale molecular level interactions between ligand and perovskite layer, which is further corroborated by comprehensive multiscale characterization. These results provide insights into the modulation of the grain boundaries, local density of states, surface bandgap, and interfacial recombination. Chemical analysis of aged devices showed that molecular passivation suppresses interfacial ion diffusion and inhibits the photoinduced I-2 release that irreversibly degrades the perovskite. The interfacial engineering strategies enabled by multifunctional ligands can expedite the path towards stable PSCs.
  •  
5.
  • Ren, Yameng, et al. (författare)
  • Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 613:7942, s. 60-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Dye-sensitized solar cells (DSCs) convert light into electricity by using photosensitizers adsorbed on the surface of nanocrystalline mesoporous titanium dioxide (TiO2) films along with electrolytes or solid charge-transport materials(1-3). They possess many features including transparency, multicolour and low-cost fabrication, and are being deployed in glass facades, skylights and greenhouses(4). Recent development of sensitizers(5-10), redox mediators(11-13) and device structures(14) has improved the performance of DSCs, particularly under ambient light conditions(14-17). To further enhance their efficiency, it is pivotal to control the assembly of dye molecules on the surface of TiO2 to favour charge generation. Here we report a route of pre-adsorbing a monolayer of a hydroxamic acid derivative on the surface of TiO2 to improve the dye molecular packing and photovoltaic performance of two newly designed co-adsorbed sensitizers that harvest light quantitatively across the entire visible domain. The best performing cosensitized solar cells exhibited a power conversion efficiency of 15.2% (which has been independently confirmed) under a standard air mass of 1.5 global simulated sunlight, and showed long-term operational stability (500 h). Devices with a larger active area of 2.8 cm(2) exhibited a power conversion efficiency of 28.4% to 30.2% over a wide range of ambient light intensities, along with high stability. Our findings pave the way for facile access to high-performance DSCs and offer promising prospects for applications as power supplies and battery replacements for low-power electronic devices(18-20) that use ambient light as their energy source.
  •  
6.
  • Zhao, Lichen, et al. (författare)
  • Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 8:35
  • Tidskriftsartikel (refereegranskat)abstract
    • There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra- aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy