SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eimer A.) "

Sökning: WFRF:(Eimer A.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasi, R., et al. (författare)
  • Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-energy Tracks: An 11 yr Analysis
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of >= 0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3 sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 x 10-15 (TeV cm2 s)-1 at 90% confidence assuming an E -2 spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.
  •  
2.
  • Abbasi, R., et al. (författare)
  • Search for decoherence from quantum gravity with atmospheric neutrinos
  • 2024
  • Ingår i: Nature Physics. - 1745-2481 .- 1745-2473. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5-10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino-quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. Interactions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.
  •  
3.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Espinosa, Lisa, et al. (författare)
  • Reading others' social appraisals after viewing an aversive film online impacts mood but not intrusive memories
  • 2023
  • Ingår i: Journal of Anxiety Disorders. - : Elsevier BV. - 0887-6185 .- 1873-7897. ; 99
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to aversive footage online can affect our well-being, but to what extent does reading others' appraisals of this content modulate our affective responses? In a pre-registered online study (N = 170), we used a digital trauma film paradigm as an analogue for the naturalistic exposure to aversive visual content online. We investigated whether online social reappraisal about the film influenced acute affective responses and subsequent intrusive memories. First, we examined whether the digital trauma film paradigm induced similar affective responses as in-lab experiments (within-subjects; change in negative mood and intrusive memories of the film during seven days). Participants reported a negative mood change and experienced intrusive memories of the film, extending findings from in-lab experiments. Next, we tested a social reappraisal manipulation that provides written comments from (fictitious) previous participants (between-subjects; reading positive, negative, or no comments) modulated participants' affective responses. As predicted, relative to controls and negative comments, reading positive comments decreased negative mood. However, reading negative comments did not increase negative mood. Contrary to predictions, the social reappraisal manipulation did not modulate the number of intrusive memories. Findings suggest the benefit of positive social reappraisal for mitigating negative mood, but not intrusive memories following aversive film content online.
  •  
10.
  • Knitza, J, et al. (författare)
  • Toward Earlier Diagnosis Using Combined eHealth Tools in Rheumatology: The Joint Pain Assessment Scoring Tool (JPAST) Project
  • 2020
  • Ingår i: JMIR mHealth and uHealth. - : JMIR Publications Inc.. - 2291-5222. ; 8:5, s. e17507-
  • Tidskriftsartikel (refereegranskat)abstract
    • Outcomes of patients with inflammatory rheumatic diseases have significantly improved over the last three decades, mainly due to therapeutic innovations, more timely treatment, and a recognition of the need to monitor response to treatment and to titrate treatments accordingly. Diagnostic delay remains a major challenge for all stakeholders. The combination of electronic health (eHealth) and serologic and genetic markers holds great promise to improve the current management of patients with inflammatory rheumatic diseases by speeding up access to appropriate care. The Joint Pain Assessment Scoring Tool (JPAST) project, funded by the European Union (EU) European Institute of Innovation and Technology (EIT) Health program, is a unique European project aiming to enable and accelerate personalized precision medicine for early treatment in rheumatology, ultimately also enabling prevention. The aim of the project is to facilitate these goals while at the same time, reducing cost for society and patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy