SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eisenhauer David) "

Sökning: WFRF:(Eisenhauer David)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
3.
  • Phillips, Helen R. P., et al. (författare)
  • Global distribution of earthworm diversity
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6464, s. 480-
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
  •  
4.
  • Potapov, Anton M., et al. (författare)
  • Global fine-resolution data on springtail abundance and community structure
  • 2024
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
  •  
5.
  • Becker, Christiane, et al. (författare)
  • Nanophotonic enhanced perovskite-silicon solar cell devices
  • 2019
  • Ingår i: ; , s. 858-859
  • Konferensbidrag (refereegranskat)abstract
    • Perovskite-silicon tandem solar cells are a promising concept for overcoming the limits of conventional silicon single-junction technology. Light management is doubtless a key issue for further boosting efficiency. We discuss the impact of photonic nanostructures on the optical performance of perovskite-silicon devices. We experimentally and numerically demonstrate shallow antireflective nanotextures, which are compatible with perovskite solution processing. We further showcase enhanced photon up-conversion using perovskite nanoparticles interacting with photonic nanostructures and discuss the applicability for spectral conversion of sunlight.
  •  
6.
  • Becker, Christiane, et al. (författare)
  • Nanophotonic-Enhanced Two-Photon-Excited Photoluminescence of Perovskite Quantum Dots
  • 2018
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 5:11, s. 4668-4676
  • Tidskriftsartikel (refereegranskat)abstract
    • All-inorganic CsPbBr3 perovskite colloidal quantum dots have recently emerged as a promising material for a variety of optoelectronic applications, among others for multiphoton-pumped lasing. Nevertheless, high irradiance levels are generally required for such multiphoton processes. One strategy to enhance the multiphoton absorption is taking advantage of high local light intensities using photonic nanostructures. Here, we investigate two-photon-excited photoluminescence of CsPbBr3 perovskite quantum dots on a silicon photonic crystal slab. By systematic excitation of optical resonances using a pulsed near-infrared laser beam, we observe an enhancement of two-photon-pumped photoluminescence by more than 1 order of magnitude when comparing to using a bulk silicon film. Experimental and numerical analyses allow relating these findings to near-field enhancement effects on the nanostructured silicon surface. The results reveal a promising approach for significantly decreasing the required irradiance levels for multiphoton processes being of advantage in applications such as biomedical imaging, lighting, and solar energy.
  •  
7.
  •  
8.
  • Jochum, K. P., et al. (författare)
  • MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios
  • 2006
  • Ingår i: Geochemistry Geophysics Geosystems. - 1525-2027. ; 7:15 Febr
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We present new analytical data of major and trace elements for the geological MPI-DING glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, BM90/21-G, T1-G, and ATHO-G. Different analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties ( at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive ( isotope dilution) and comparative bulk ( e. g., INAA, ICPMS, SSMS) and microanalytical ( e. g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented.
  •  
9.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
10.
  • Potapov, Anton M., et al. (författare)
  • Globally invariant metabolism but density-diversity mismatch in springtails
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
konferensbidrag (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Alatalo, Juha M. (4)
Rashid, Muhammad Imt ... (3)
Holmstrup, Martin (3)
Ferlian, Olga (3)
Bokhorst, Stef (3)
Aalto, Juha (2)
visa fler...
Hylander, Kristoffer (2)
Luoto, Miska (2)
Dorrepaal, Ellen (2)
Zheng, Kaibo (2)
Pullerits, Tõnu (2)
Ardö, Jonas (2)
De Frenne, Pieter (2)
Ahlbäck Widenfalk, L ... (2)
Merinero, Sonia (2)
Larson, Keith (2)
Čuchta, Peter (2)
Lenoir, Jonathan (2)
De Smedt, Pallieter (2)
Boeckx, Pascal (2)
Björk, Robert G., 19 ... (2)
Kanka, Robert (2)
Greve, Michelle (2)
Berg, Matty P. (2)
Smith, Stuart W. (2)
Björkman, Mats P., 1 ... (2)
Jochum, Malte (2)
Boike, Julia (2)
Bauters, Marijn (2)
Walz, Josefine (2)
Becker, Christiane (2)
Manley, Phillip (2)
Jäger, Klaus (2)
Eisenhauer, David (2)
Burger, Sven (2)
Chen, Ting-Wen (2)
Buchmann, Nina (2)
Sun, Xin (2)
Scheu, Stefan (2)
Janion-Scheepers, Ch ... (2)
Pollierer, Melanie M (2)
Van Meerbeek, Koenra ... (2)
Benito Alonso, José ... (2)
Dolezal, Jiri (2)
Dengler, Jürgen (2)
Carbognani, Michele (2)
Blonder, Benjamin (2)
Lembrechts, Jonas J. (2)
Krab, Eveline J (2)
Classen, Aimée T. (2)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (6)
Umeå universitet (5)
Lunds universitet (4)
Göteborgs universitet (3)
Stockholms universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Lantbruksvetenskap (2)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy