SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eizirik Décio L.) "

Sökning: WFRF:(Eizirik Décio L.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alonso, Lorena, et al. (författare)
  • TIGER : The gene expression regulatory variation landscape of human pancreatic islets
  • 2021
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 37:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) identified hundreds of signals associated with type 2 diabetes (T2D). To gain insight into their underlying molecular mechanisms, we have created the translational human pancreatic islet genotype tissue-expression resource (TIGER), aggregating >500 human islet genomic datasets from five cohorts in the Horizon 2020 consortium T2DSystems. We impute genotypes using four reference panels and meta-analyze cohorts to improve the coverage of expression quantitative trait loci (eQTL) and develop a method to combine allele-specific expression across samples (cASE). We identify >1 million islet eQTLs, 53 of which colocalize with T2D signals. Among them, a low-frequency allele that reduces T2D risk by half increases CCND2 expression. We identify eight cASE colocalizations, among which we found a T2D-associated SLC30A8 variant. We make all data available through the TIGER portal (http://tiger.bsc.es), which represents a comprehensive human islet genomic data resource to elucidate how genetic variation affects islet function and translates into therapeutic insight and precision medicine for T2D.
  •  
2.
  •  
3.
  • Andersson, Annika K., 1974- (författare)
  • Role of Inducible Nitric Oxide Synthase and Melatonin in Regulation of β-cell Sensitivity to Cytokines
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mechanisms of β-cell destruction leading to type 1 diabetes are complex and not yet fully understood, but infiltration of the islets of Langerhans by autoreactive immune cells is believed to be important. Activated macrophages and T-cells may then secrete cytokines and free radicals, which could selectively damage the β-cells. Among the cytokines, IL-1β, IFN-γ and TNF-α can induce expression of inducible nitric synthase (iNOS) and cyclooxygenase-2. Subsequent nitric oxide (NO) and prostaglandin E2 (PGE2) formation may impair islet function.In the present study, the ability of melatonin (an antioxidative and immunoregulatory hormone) to protect against β-cell damage induced by streptozotocin (STZ; a diabetogenic and free radical generating substance) or IL-1β exposure was examined. In vitro, melatonin counteracted STZ- but not IL-1β-induced islet suppression, indicating that the protective effect of melatonin is related to interference with free radical generation and DNA damage, rather than NO synthesis. In vivo, non-immune mediated diabetes induced by a single dose of STZ was prevented by melatonin.Furthermore, the effects of proinflammatory cytokines were examined in islets obtained from mice with a targeted deletion of the iNOS gene (iNOS -/- mice) and wild-type controls. The in vitro data obtained show that exposure to IL-1β or (IL-1β + IFN-γ) induce disturbances in the insulin secretory pathway, which were independent of NO or PGE2 production and cell death. Initially after addition, in particular IL-1β seems to be stimulatory for the insulin secretory machinery of iNOS –/- islets, whereas IL-1β acts inhibitory after a prolonged period. Separate experiments suggest that the stimulatory effect of IL-1β involves an increased gene expression of phospholipase D1a/b. In addition, the formation of new insulin molecules appears to be affected, since IL-1β and (IL-1β + IFN-γ) suppressed mRNA expression of both insulin convertase enzymes and insulin itself.
  •  
4.
  • Blanchi, Bruno, et al. (författare)
  • EndoC-βH5 cells are storable and ready-to-use human pancreatic beta cells with physiological insulin secretion
  • 2023
  • Ingår i: Molecular Metabolism. - 2212-8778. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-βH5 cells, the latest in the EndoC-βH cell family. Methods: EndoC-βH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-βH5 cells. We performed transcriptome, immunological and extensive functional assays. Results: Ready to use EndoC-βH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-βH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-βH5 cells elicit specific A2-alloreactive CD8 T cell activation. Conclusions: EndoC-βH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.
  •  
5.
  • Bugliani, Marco, et al. (författare)
  • DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes
  • 2018
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 473, s. 186-193
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been reported that the incretin system, including regulated GLP-1 secretion and locally expressed DPP-4, is present in pancreatic islets. In this study we comprehensively evaluated the expression and role of DPP-4 in islet alpha and beta cells from non-diabetic (ND) and type 2 diabetic (T2D) individuals, including the effects of its inhibition on beta cell function and survival. Isolated islets were prepared from 25 ND and 18 T2D organ donors; studies were also performed with the human insulin-producing EndoC-βH1 cells. Morphological (including confocal microscopy), ultrastructural (electron microscopy, EM), functional (glucose-stimulated insulin secretion), survival (EM and nuclear dyes) and molecular (RNAseq, qPCR and western blot) studies were performed under several different experimental conditions. DPP-4 co-localized with glucagon and was also expressed in human islet insulin-containing cells. Furthermore, DPP-4 was expressed in EndoC-βH1 cells. The proportions of DPP-4 positive alpha and beta cells and DPP-4 gene expression were significantly lower in T2D islets. A DPP-4 inhibitor protected ND human beta cells and EndoC-βH1 cells against cytokine-induced toxicity, which was at least in part independent from GLP1 and associated with reduced NFKB1 expression. Finally, DPP-4 inhibition augmented glucose-stimulated insulin secretion, reduced apoptosis and improved ultrastructure in T2D beta cells. These results demonstrate the presence of DPP-4 in human islet alpha and beta cells, with reduced expression in T2D islets, and show that DPP-4 inhibition has beneficial effects on human ND and T2D beta cells. This suggests that DPP-4, besides playing a role in incretin effects, directly affects beta cell function and survival.
  •  
6.
  • Chandra, Vikash, et al. (författare)
  • The type 1 diabetes gene TYK2 regulates β-cell development and its responses to interferon-α
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic β-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in β-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in β-cell development and support TYK2 inhibition in adult β-cells as a potent therapeutic target to halt T1D progression.
  •  
7.
  •  
8.
  •  
9.
  • Cunha, Daniel A., et al. (författare)
  • Thrombospondin 1 protects pancreatic beta-cells from lipotoxicity via the PERK-NRF2 pathway
  • 2016
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 23:12, s. 1995-2006
  • Tidskriftsartikel (refereegranskat)abstract
    • The failure of beta-cells has a central role in the pathogenesis of type 2 diabetes, and the identification of novel approaches to improve functional beta-cell mass is essential to prevent/revert the disease. Here we show a critical novel role for thrombospondin 1 (THBS1) in beta-cell survival during lipotoxic stress in rat, mouse and human models. THBS1 acts from within the endoplasmic reticulum to activate PERK and NRF2 and induce a protective antioxidant defense response against palmitate. Prolonged palmitate exposure causes THBS1 degradation, oxidative stress, activation of JNK and upregulation of PUMA, culminating in beta-cell death. These findings shed light on the mechanisms leading to beta-cell failure during metabolic stress and point to THBS1 as an interesting therapeutic target to prevent oxidative stress in type 2 diabetes.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy