SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ekblad Tobias 1979 ) "

Sökning: WFRF:(Ekblad Tobias 1979 )

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aldred, Nick, et al. (författare)
  • In situ study of surface exploration by barnacle cyprids (Semibalanus balanoides) using imaging surface plasmon resonance
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Imaging surface plasmon resonance (iSPR) was employed to investigate the interfacial adhesion phenomena that occur during the exploration of immersed surfaces by barnacle cyprids (Semibalanus balanoides). It was hypothesised that since the footprint material used by cyprids for temporary adhesion has previously been related to a large cuticular glycoprotein (SIPC), the passive deposition of cyprid footprints and the binding of SIPC to surfaces might correlate. Increased surface exploration (and footprint deposition) has also been related to increased likelihood of settlement in barnacle cyprids. If a correlation between footprint deposition and SIPC binding were to exist, therefore, there would be potential for the development of a high‐throughput assay to determine the efficacy of putative antifouling chemistries against cyprids prior to, or instead of, lengthy bio‐assays. Footprints were deposited in large numbers on carboxyl‐terminated self‐assembled monolayers (SAMs) and in very small numbers on ethylene glycol‐containing SAMs and hydrogel coatings. SIPC binding also followed the same trend. An exception to the correlation was an amineterminated SAM that accumulated few cyprid footprints, but bound SIPC strongly. It is concluded that there is great potential for the iSPR technique to be used in the evaluation of putatively non‐fouling surfaces as well as improving our understanding of the nature of the cyprid footprint material and its interactions with surfaces of different chemistry. However, the use of SIPC binding as a predictor of footprint accumulation/likelihood of settlement of cyprids to surfaces would be premature at this stage without first understanding the exceptions highlighted in this study.
  •  
3.
  •  
4.
  • Ekblad, Tobias, 1979- (författare)
  • Hydrogel coatings for biomedical and biofouling applications
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Many applications share a substantial and yet unmet need for prediction and control of interactions between surfaces and proteins or living cells. Examples are blood-contacting biomaterials, biosensors, and non-toxic anti-biofouling coatings for ship hulls. The main focus of this thesis work has been the synthesis, characterization and properties of a group of coatings, designed for such applications. Many types of substrates, particularly plastics, were coated directly with ultrathin, hydrophilic polymer coatings, using a newly developed polymerization method initiated by short-wavelength ultraviolet light.The thesis contains eight papers and an introduction aimed to provide a context for the research work. The common theme, discussed and analyzed throughout the work, has been the minimization of non-specific binding of proteins to surfaces, thereby limiting the risk of uncontrolled attachment of cells and higher organisms. This has mainly been accomplished through the incorporation of monomer units bearing poly(ethylene glycol) (PEG) side chains in the coatings. Such PEG-containing “protein resistant” coatings have been used in this work as matrices for biosensor applications, as blood-contacting inert surfaces and as antibiofouling coatings for marine applications, with excellent results. The properties of the coatings, and their interactions with proteins and cells, have been thoroughly characterized using an array of techniques such as infrared spectroscopy, ellipsometry, atomic force microscopy, surface plasmon resonance and neutron reflectometry. In addition, other routes to fabricate coatings with high protein resistance have also been utilized. For instance, the versatility of the fabrication method has enabled the design of gradients with varying electrostatic charge, affecting the protein adsorption and leading to protein resistance in areas where the charges are balanced.This thesis also describes a novel application of imaging surface plasmon resonance for the investigation of the surface exploration behavior of marine biofouling organisms, in particular barnacle larvae. This technique allows for real-time assessment of the rate of surface exploration and the deposition of protein-based adhesives onto surfaces, a process which was previously very difficult to investigate experimentally. In this thesis, the method was applied to several model surface chemistries, including the hydrogels described above. The new method promises to provide insights into the interactions between biofouling organisms and a surface during the critical stages prior to permanent settlement, hopefully facilitating the development of antibiofouling coatings for marine applications.
  •  
5.
  • Ekblad, Tobias, 1979-, et al. (författare)
  • Patterned Hydrogels for Controlled Platelet Adhesion from Whole Blood and Plasma
  • 2010
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 20:15, s. 2396-2403
  • Tidskriftsartikel (refereegranskat)abstract
    • This work describes the preparation and properties of hydrogel surface chemistries enabling controlled and well-defined cell adhesion. The hydrogels may be prepared directly on plastic substrates, such as polystyrene slides or dishes, using a quick and experimentally simple photopolymerization process, compatible with photolithographic and microfluidic patterning methods. The intended application for these materials is as substrates for diagnostic cell adhesion assays, particularly for the analysis of human platelet function. The adsorption of fibrinogen and other platelet promoting molecules is shown to be completely inhibited by the hydrogel, provided that the film thickness is sufficient (>5 nm). This allows the hydrogel to be used as a matrix for presenting selected bioactive ligands without risking interference from nonspecifically adsorbed platelet adhesion factors, even in undiluted whole blood and blood plasma. This concept is demonstrated by preparing patterns of proteins on hydrogel surfaces, resulting in highly controlled platelet adhesion. Further insights into the protein immobilization and platelet adhesion processes are provided by studies using imaging surface plasmon resonance. The hydrogel surfaces used in this work appear to provide an ideal platform for cell adhesion studies of platelets, and potentially also for other cell types.
  •  
6.
  •  
7.
  •  
8.
  • Nagy, Bela, 1985-, et al. (författare)
  • Structure of Self-Initiated Photopolymerized Films : A Comparison of Models
  • 2022
  • Ingår i: Langmuir. - : American Chemical Society. - 0743-7463 .- 1520-5827. ; 38:45, s. 14004-14015
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-initiated photografting and photopolymerization (SI-PGP) uses UV illumination to graft polymers to surfaces without additional photoinitiators using the monomers as initiators, “inimers”. A wider use of this method is obstructed by a lack of understanding of the resulting, presumably heterogeneous, polymer structure and of the parallel degradation under continuous UV illumination. We have used neutron reflectometry to investigate the structure of hydrated SI-PGP-prepared poly(HEMA-co-PEG10MA) (poly(2-hydroxyethyl methacrylate-co-(ethylene glycol)10 methacrylate)) films and compared parabolic, sigmoidal, and Gaussian models for the polymer volume fraction distributions. Results from fitting these models to the data suggest that either model can be used to approximate the volume fraction profile to similar accuracy. In addition, a second layer of deuterated poly(methacrylic acid) (poly(dMAA)) was grafted over the existing poly(HEMA-co-PEG10MA) layer, and the resulting double-grafted films were also studied by neutron reflectometry to shed light on the UV-polymerization process and the inevitable UV-induced degradation which competes with the grafting.
  •  
9.
  • Tai, Feng-i, 1982-, et al. (författare)
  • Interaction Forces on Polyampholytic Hydrogel Gradient Surfaces
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:3, s. 5670-5681
  • Tidskriftsartikel (refereegranskat)abstract
    • Rational design and informed development of nontoxic antifouling coatings requires a thorough understanding of the interactions between surfaces and fouling species. With more complex antifouling materials, such as composites or zwitterionic polymers, there follows also a need for better characterization of the materials as such. To further the understanding of the antifouling properties of charge-balanced polymers, we explore the properties of layered polyelectrolytes and their interactions with charged surfaces. These polymers were prepared via self-initiated photografting and photopolymerization (SIPGP); on top of a uniform bottom layer of anionic poly(methacrylic acid) (PMAA), a cationic poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) thickness gradient was formed. Infrared microscopy and imaging spectroscopic ellipsometry were used to characterize chemical composition and swelling of the combined layer. Direct force measurements by colloidal probe atomic force microscopy were performed to investigate the forces between the polymer gradients and charged probes. The swelling of PMAA and PDMAEMA are very different, with steric and electrostatic forces varying in a nontrivial manner along the gradient. The gradients can be tuned to form a protein-resistant charge-neutral region, and we demonstrate that this region, where both electrostatic and steric forces are small, is highly compressed and the origin of the protein resistance of this region is most likely an effect of strong hydration of charged residues at the surface, rather than swelling or bulk hydration of the polymer. In the highly swollen regions far from charge-neutrality, steric forces dominate the interactions between the probe and the polymer. In these regions, the SIPGP polymer has qualitative similarities with brushes, but we were unable to quantitatively describe the polymer as a brush, supporting previous data suggesting that these polymers are cross-linked.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy