SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eker H) "

Sökning: WFRF:(Eker H)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Muysoms, F. E., et al. (författare)
  • Classification of primary and incisional abdominal wall hernias
  • 2009
  • Ingår i: Hernia. - : Springer Science and Business Media LLC. - 1265-4906 .- 1248-9204. ; 13:4, s. 407-414
  • Konferensbidrag (refereegranskat)abstract
    • A classification for primary and incisional abdominal wall hernias is needed to allow comparison of publications and future studies on these hernias. It is important to know whether the populations described in different studies are comparable. Several members of the EHS board and some invitees gathered for 2 days to discuss the development of an EHS classification for primary and incisional abdominal wall hernias. To distinguish primary and incisional abdominal wall hernias, a separate classification based on localisation and size as the major risk factors was proposed. Further data are needed to define the optimal size variable for classification of incisional hernias in order to distinguish subgroups with differences in outcome. A classification for primary abdominal wall hernias and a division into subgroups for incisional abdominal wall hernias, concerning the localisation of the hernia, was formulated.
  •  
5.
  • de Zwarte, Sonja M. C., et al. (författare)
  • Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 414-430
  • Tidskriftsartikel (refereegranskat)abstract
    • First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.
  •  
6.
  • de Zwarte, Sonja M. C., et al. (författare)
  • The association between familial risk and brain abnormalities is disease specific : an ENIGMA-relatives study of schizophrenia and bipolar disorder
  • 2019
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 86:7, s. 545-556
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects.METHODS: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects.RESULTS: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects.CONCLUSIONS: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
  •  
7.
  • Pham, T. H, et al. (författare)
  • Quantifying the optical properties and chromophore concentrations of turbid media by chemometric analysis of hyperspectral diffuse reflectance data collected using a fourier interferometric imaging system
  • 2001
  • Ingår i: Applied Spectroscopy. - : SAGE Publications. - 1943-3530 .- 0003-7028. ; 55:8, s. 1035-1045
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-contact Fourier transform interferometric imaging system was used to collect hyperspectral images of the steady-state diffuse reflectance from a point source in turbid media for the spectral range of 550-850 nm. Steady-state diffuse reflectance profiles were generated from the hyperspectral images, and partial least-squares (PLS) regression was performed on the diffuse reflectance profiles to quantify absorption (mu (alpha)) and reduced scattering (mu (s)') properties of turbid media. The feasibility of using PLS regression to predict optical properties was examined for two different sets of spatially-resolved diffuse reflectance data. One set of data was collected from 40 turbid phantoms, while the second set was generated by convolving Monte Carlo simulations with the instrument response of the imaging system. Study results show that PLS prediction of mu (alpha) and mu (s)' was accurate to within +/-8% and +/-5%, respectively, when the model was trained on turbid phantom data. Moreover, PLS prediction of optical properties was considerably faster and more efficient than direct least-squares fitting of spatially-resolved profiles. When the PLS model was trained on Monte Carlo simulated data and subsequently used to predict mu (alpha) and mu (s)' from the diffuse reflectance of turbid phantom, the percent accuracies degraded to +/-12% and +/-5%, respectively. These accuracy values are applicable to homogenous, semi-infinite turbid phantoms with optical property ranges comparable to tissues.
  •  
8.
  • Tärneberg, William, et al. (författare)
  • The 6G Computing Continuum (6GCC) : Meeting the 6G computing challenges
  • 2022
  • Ingår i: 2022 1st International Conference on 6G Networking, 6GNet 2022. - : IEEE Computer Society. - 9781665467636
  • Konferensbidrag (refereegranskat)abstract
    • 6G systems, such as Large Intelligent Surfaces, will require distributed, complex, and coordinated decisions through-out a very heterogeneous and cell free infrastructure. This will require a fundamentally redesigned software infrastructure accompanied by massively distributed and heterogeneous computing resources, vastly different from current wireless networks. To address these challenges, in this paper, we propose and motivate the concept of a 6G Computing Continuum (6GCC) and two research testbeds, to advance the rate and quality of research. 6G Computing Continuum is an end-to-end compute and software platform for realizing large intelligent surfaces and its tenant users and applications. One for addressing the challenges or orchestrating shared computational resources in the wireless domain, implemented on a Large Intelligent Surfaces testbed. Another simulation-based testbed is intended to address scalability and global-scale orchestration challenges.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy