SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(El Maarry Mohamed R.) "

Sökning: WFRF:(El Maarry Mohamed R.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
2.
  • Pajola, Maurizio, et al. (författare)
  • Size-frequency distribution of boulders >= 7 m on comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC. on 5 and 6 August 2014. The scale of these images (2.44-2.03 m/px) is such that boulders >= 7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowine of the surface (observation phase angle ranging from 48 to 53), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km(2)), with a global number density of nearly 100/km(2) and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.31-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km(2) of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.
  •  
3.
  • Pajola, Maurizio, et al. (författare)
  • The southern hemisphere of 67P/Churyumov-Gerasimenko : Analysis of the preperihelion size-frequency distribution of boulders >= 7m
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We calculate the size-frequency distribution of the boulders on the southern hemisphere of comet 67P Churyumov-Gerasimenko (67P), which was in shadow before the end of April 2015. We compare the new results with those derived from the northern hemisphere and equatorial regions of 67P, highlighting the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 2 May 2015 at a distance of 125 km from the nucleus. The scale of this dataset is 2.3 m/px; the high resolution of the images, coupled with the favorable observation phase angle of 62 degrees, provided the possibility to unambiguously identify boulders >= 7 m on the surface of 67P and to manually extract them with the software ArcGIS. We derived the size-frequency distribution of the illuminated southern hemisphere. Results. We found a power-law index of -3.6 +/- 0.2 for the boulders on the southern hemisphere with a diameter range of 7-35 m. The power-law index is equal to the one previously found on northern and equatorial regions of 67P, suggesting that similar boulder formation processes occur in both hemispheres. The power-law index is related to gravitational events triggered by sublimation and/or thermal fracturing causing regressive erosion. In addition, the presence of a larger number of boulders per km(2) in the southern hemisphere, which is a factor of 3 higher with respect to the northern hemisphere, suggests that the southernmost terrains of 67P are affected by a stronger thermal fracturing and sublimating activity, hence possibly causing larger regressive erosion and gravitational events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy