SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elbouazzaoui Kenza) "

Sökning: WFRF:(Elbouazzaoui Kenza)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Edvin K. W., et al. (författare)
  • Initial SEI formation in LiBOB-, LiDFOB- and LiBF4-containing PEO electrolytes
  • 2024
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 12:15, s. 9184-9199
  • Tidskriftsartikel (refereegranskat)abstract
    • A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs – polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) – using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.
  •  
2.
  •  
3.
  • Elbouazzaoui, Kenza, et al. (författare)
  • Ionic transport in solid-state composite poly(trimethylene carbonate)-Li6.7Al0.3La3Zr2O12 electrolytes : The interplay between surface chemistry and ceramic particle loading
  • 2023
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 462
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionic transport in solid-state composite electrolytes based on poly(trimethylene carbonate) (PTMC) with LiTFSI salt and garnet-type ion-conducting Li6.7Al0.3-La3Zr2O12 (LLZO) ceramic particles is here investigated for a range of different compositions. Positive effects on ionic conductivity have previously been reported for LLZO incorporated into poly(ethylene oxide) (PEO), but the origin of these effects is unclear since the inclusion of particles also affects polymer crystallinity. PTMC is, in contrast to PEO, a fully amorphous polymer, and therefore here chosen for the design of a more straight-forward composite electrolyte (CPE) system to study ionic transport. With LLZO loadings ranging from 5 to 70 wt%, the CPE with 30 wt% of LLZO exhibits the highest ionic conductivity with a cationic transference number of 0.94 at 60 degrees C. This is significantly higher than for the pristine PTMC polymer electrolyte. Generally, low to moderate LLZO loadings display a gradual increase of the ionic conductivity, transference number and also of the polymer-cation coordination number. The combined contributions of ionic transport along polymer-ceramic interfaces and Lewis acid-base interaction between the LLZO particles and the LiTFSI salt can explain this enhancement. With loadings of LLZO above 50 wt%, a detrimental effect on the ionic conductivity was however observed. This could be explained by agglomeration of ceramic particles, and by a partial coverage of LLZO particles with a Li2CO3 layer. Consequently, inner polymer-particle interfaces become more resistive, and Li+conduction is prevented along interfacial pathways. The presence of Li2CO3 has more detrimental impact at higher LLZO loadings, since inter-particle connectivity will be hampered, and this is vital for efficient ionic transport. This suggests that there is an interplay between the LLZO particle surface chemistry with its loading, which ultimately controls the Li-ion transport.
  •  
4.
  • Elbouazzaoui, Kenza, et al. (författare)
  • NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries
  • 2021
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 399
  • Tidskriftsartikel (refereegranskat)abstract
    • A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)(3) (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)(3) materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g(-1) was obtained for the Mg-based phosphate, 104.3 mAh.g(-1) for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g(-1) with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C.
  •  
5.
  • Sun, Wenhao, et al. (författare)
  • Facile fabrication of AgBr/HCCN hybrids with Z-scheme heterojunction for efficient photocatalytic hydrogen evolution
  • 2024
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Constructing a Z-scheme heterojunction with enhanced photocatalytic hydrogen evolution for graphitic carbon nitride-based (g-C3N4) composites is challenging because integrating g-C3N4 with other semiconductors, without specific band structure design, typically results in type I or type II heterojunctions. These heterojunctions have lower redox ability and limited enhancement in photocatalysis. Herein, we select highly crystalline carbon nitride (HCCN) as a proof-of-concept substrate. For the first time, we develop a AgBr nanosphere/HCCN composite photocatalyst that features an all -solid -state direct Z-scheme heterojunction for visible-light photocatalytic hydrogen evolution. The electron transfer mechanism is initially studied from the band structures and Fermi levels of HCCN and AgBr. It is subsequently confirmed by X-ray photoelectron spectroscopy (XPS), and electron microscopy. The close heterojunction contact and the built-in electron field of the Z-scheme heterojunction promote the migration and separation of photogenerated electrons and holes in the composite photocatalyst. Due to the redistribution of charge carriers, the photocatalyst shows superior redox capability and a markedly enhanced hydrogen evolution performance compared to its individual components. Combining all the advantages, AgBr nanosphere/HCCN reached an apparent quantum efficiency (AQE) of 6 % under the illumination of 410 nm, which is 4 times higher than that of the single HCCN component.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy