SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elgali Ibrahim) "

Sökning: WFRF:(Elgali Ibrahim)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cardemil, Carina, et al. (författare)
  • Strontium-doped calcium phosphate and hydroxyapatite granules promote different inflammatory and bone remodelling responses in normal and ovariectomised rats.
  • 2013
  • Ingår i: PLosOne. - : Public Library of Science (PLoS). - 1932-6203. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The healing of bone defects may be hindered by systemic conditions such as osteoporosis. Calcium phosphates, with or without ion substitutions, may provide advantages for bone augmentation. However, the mechanism of bone formation with these materials is unclear. The aim of this study was to evaluate the healing process in bone defects implanted with hydroxyapatite (HA) or strontium-doped calcium phosphate (SCP) granules, in non-ovariectomised (non-OVX) and ovariectomised (OVX) rats. After 0 (baseline), six and 28d, bone samples were harvested for gene expression analysis, histology and histomorphometry. Tumour necrosis factor-α (TNF-α), at six days, was higher in the HA, in non-OVX and OVX, whereas interleukin-6 (IL-6), at six and 28d, was higher in SCP, but only in non-OVX. Both materials produced a similar expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Higher expression of osteoclastic markers, calcitonin receptor (CR) and cathepsin K (CatK), were detected in the HA group, irrespective of non-OVX or OVX. The overall bone formation was comparable between HA and SCP, but with topological differences. The bone area was higher in the defect centre of the HA group, mainly in the OVX, and in the defect periphery of the SCP group, in both non-OVX and OVX. It is concluded that HA and SCP granules result in comparable bone formation in trabecular bone defects. As judged by gene expression and histological analyses, the two materials induced different inflammatory and bone remodelling responses. The modulatory effects are associated with differences in the spatial distribution of the newly formed bone.
  •  
2.
  •  
3.
  • Elgali, Ibrahim, et al. (författare)
  • Guided bone regeneration: materials and biological mechanisms revisited
  • 2017
  • Ingår i: European Journal of Oral Sciences. - : Wiley. - 0909-8836. ; 125:5, s. 315-337
  • Forskningsöversikt (refereegranskat)abstract
    • Guided bone regeneration (GBR) is commonly used in combination with the installment of titanium implants. The application of a membrane to exclude non-osteogenic tissues from interfering with bone regeneration is a key principle of GBR. Membrane materials possess a number of properties which are amenable to modification. A large number of membranes have been introduced for experimental and clinical verification. This prompts the need for an update on membrane properties and the biological outcomes, as well as a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes. The relevant literature for this narrative review was assessed after a MEDLINE/PubMed database search. Experimental data suggest that different modifications of the physicochemical and mechanical properties of membranes may promote bone regeneration. Nevertheless, the precise role of membrane porosities for the barrier function of GBR membranes still awaits elucidation. Novel experimental findings also suggest an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. The optimization of membrane materials by systematically addressing both the barrier and the bioactive properties is an important strategy in this field of research.
  •  
4.
  • Elgali, Ibrahim, et al. (författare)
  • Guided bone regeneration using resorbable membrane and different bone substitutes : Early histological and molecular events
  • 2016
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 29, s. 409-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone insufficiency remains a major challenge for bone-anchored implants. The combination of guided bone regeneration (GBR) and bone augmentation is an established procedure to restore the bone. However, a proper understanding of the interactions between the bone substitute and GBR membrane materials and the bone-healing environment is lacking. This study aimed to investigate the early events of bone healing and the cellular activities in response to a combination of GBR membrane and different calcium phosphate (CaP) materials. Defects were created in the trabecular region of rat femurs, and filled with deproteinized bovine bone (DBB), hydroxyapatite (HA) or strontium-doped HA (SrHA) or left empty (sham). All the defects were covered with an extracellular matrix membrane. Defects were harvested after 12 h, 3 d and 6 d for histology/histomorphometry, immunohistochemistry and gene expression analyses. Histology revealed new bone, at 6 d, in all the defects. Larger amount of bone was observed in the SrHA-filled defect. This was in parallel with the reduced expression of osteoclastic genes (CR and CatK) and the osteoblast-osteoclast coupling gene (RANKL) in the SrHA defects. Immunohistochemistry indicated fewer osteoclasts in the SrHA defects. The observations of CD68 and periostin-expressing cells in the membrane per se indicated that the membrane may contribute to the healing process in the defect. It is concluded that the bone-promoting effects of Sr in vivo are mediated by a reduction in catabolic and osteoblast-osteoclast coupling processes. The combination of a bioactive membrane and CaP bone substitute material doped with Sr may produce early synergistic effects during GBR. Statement of significance The study provides novel molecular, cellular and structural evidence on the promotion of early bone regeneration in response to synthetic strontium-containing hydroxyapatite (SrHA) substitute, in combination with a resorbable, guided bone regeneration (GBR) membrane. The prevailing view, based mainly upon in vitro data, is that the beneficial effects of Sr are exerted by the stimulation of bone-forming cells (osteoblasts) and the inhibition of bone-resorbing cells (osteoclasts). In contrast, the present study demonstrates that the local effect of Sr in vivo is predominantly via the inhibition of osteoclast number and activity and the reduction of osteoblast-osteoclast coupling. This experimental data will form the basis for clinical studies, using this material as an interesting bone substitute for guided bone regeneration.
  •  
5.
  • Elgali, Ibrahim, et al. (författare)
  • Molecular and structural patterns of bone regeneration in surgically created defects containing bone substitutes
  • 2014
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 35:10, s. 3229-3242
  • Tidskriftsartikel (refereegranskat)abstract
    • Several biomaterials have been introduced for bone augmentation. However, information is lacking about the mechanisms of bone regeneration and/or integration of these materials in the recipient bone. This study aimed to determine the molecular and structural events in bone defects after augmentation with synthetic tetrapod-shaped calcium phosphate (Tetrabone; TetraB) compared with natural deproteinized bovine bone (DBB). Defects were created in the epiphyses of rat femurs and filled with TetraB or DBB or left empty (Sham). After 3, 6, 14 and 28 d, samples were harvested for histology, histomorphometry, ultrastructure and gene expression analyses. At 3 d, higher expressions of bone formation (ALP and DC) and remodeling (CatK) genes were detected in TetraB compared with DBB and Sham. Downregulation of bone remodeling genes (TRAP and CatK) was detected in DBB as compared to Sham after 14 d. Histomorphometry at 6 and 14 d demonstrated greater bone contact with the granules in TetraB. At 28 d, a larger bone area per defect was found in TetraB. The present experiments show that a synthetic substitute, consisting of alpha-tricalcium and octacalcium phosphates, induces early osteogenic and osteoclastic activities and promotes bone formation in trabecular bone defects.
  •  
6.
  • Elgali, Ibrahim (författare)
  • Molecular and structural patterns of guided bone regeneration (GBR). Experimental studies on the role of GBR membrane and bone substitute materials
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mechanisms of guided bone regeneration (GBR) and bone healing with calcium phosphate (CaP) bone substitutes are not fully understood. The major aim of this thesis was to determine the relationship between the bone formation in bone defects and the cellular distribution and activities in association with CaP materials and/or with GBR membrane. The objectives were, firstly, to examine if the different CaP substitutes induce different cellular and molecular activities, and, secondly, to investigate the mechanisms of GBR with focus on the role of the barrier membrane in the bone healing process. A series of studies were performed in a rat trabecular bone defect model using a set of molecular (e.g. qPCR) and morphological (e.g. histology & histomorphometry) techniques. Deproteinized bovine bone (DBB) and octa-CaP (TetraB) granules promoted bone regeneration and restitution of the defect. DBB was osteoconductive and elicited low resorption activity. TetraB induced early osteogenic and osteoclastic activities, resulting in greater bone formation than DBB. Strontium (Sr) doping of the CaP granules reduced the expression of osteoclastic resorption genes in comparison to hydroxyapatite (HA). Applying a collagen-based membrane on the defect promoted higher bone formation at all time periods. This was in parallel with upregulation of genes denoting cell recruitment and coupled bone formation and resorption (i.e. remodeling). The membrane was found to accumulate cells that expressed and released different pro-osteogenic growth factors (e.g. BMP-2). When the defect was simultaneously treated with the membrane and bone substitutes (DBB, HA, SrHA), more bone and an inhibitory effect of Sr on osteoclasts was demonstrated in the SrHA treated defect. In conclusion, different calcium phosphate bone substitutes induce specific molecular cascades involved in the different processes of bone healing, including early inflammation, bone formation and remodeling. This promotes bone regeneration and defect restitution in comparison with the sham defect. Strontium incorporation in a synthetic CaP substitute reduces the osteoclastic resorptive activities, and promotes bone formation. Furthermore, the present results provide cellular and molecular evidence in vivo suggesting a novel role for the membrane during GBR, by acting as a bioactive compartment rather than as a passive barrier. The results provide new opportunities for the design of a new generation of materials to enhance bone regeneration.
  •  
7.
  • Omar, Omar, et al. (författare)
  • Barrier membranes: More than the barrier effect?
  • 2019
  • Ingår i: Journal of Clinical Periodontology. - : Wiley. - 0303-6979. ; 46:S21, s. 103-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To review the knowledge on the mechanisms controlling membrane-host interactions in guided bone regeneration (GBR) and investigate the possible role of GBR membranes as bioactive compartments in addition to their established role as barriers. Materials and Methods A narrative review was utilized based on in vitro, in vivo and available clinical studies on the cellular and molecular mechanisms underlying GBR and the possible bioactive role of membranes. Results Emerging data demonstrate that the membrane contributes bioactively to the regeneration of underlying defects. The cellular and molecular activities in the membrane are intimately linked to the promoted bone regeneration in the underlying defect. Along with the native bioactivity of GBR membranes, incorporating growth factors and cells in membranes or with graft materials may augment the regenerative processes in underlying defects. Conclusion In parallel with its barrier function, the membrane plays an active role in hosting and modulating the molecular activities of the membrane-associated cells during GBR. The biological events in the membrane are linked to the bone regenerative and remodelling processes in the underlying defect. Furthermore, the bone-promoting environments in the two compartments can likely be boosted by strategies targeting both material aspects of the membrane and host tissue responses.
  •  
8.
  • Omar, Omar, et al. (författare)
  • In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:43, s. 26660-26671
  • Tidskriftsartikel (refereegranskat)abstract
    • The repair of large cranial defects with bone is a major clinical challenge that necessitates novel materials and engineering solutions. Three-dimensionally (3D) printed bioceramic (BioCer) implants consisting of additively manufactured titanium frames enveloped with CaP BioCer or titanium control implants with similar designs were implanted in the ovine skull and at s.c. sites and retrieved after 12 and 3 mo, respectively. Samples were collected for morphological, ultrastructural, and compositional analyses using histology, electron microscopy, and Raman spectroscopy. Here, we show that BioCer implants provide osteoinductive and microarchitectural cues that promote in situ bone regeneration at locations distant from existing host bone, whereas bone regeneration with inert titanium implants was confined to ingrowth from the defect boundaries. The BioCer implant promoted bone regeneration at nonosseous sites, and bone bonding to the implant was demonstrated at the ultrastructural level. BioCer transformed to carbonated apatite in vivo, and the regenerated bone displayed a molecular composition indistinguishable from that of native bone. Proof-of-principle that this approach may represent a shift from mere reconstruction to in situ regeneration was provided by a retrieved human specimen, showing that the BioCer was transformed into well-vascularized osteonal bone, with a morphology, ultrastructure, and composition similar to those of native human skull bone.
  •  
9.
  • Turri, Alberto, 1973, et al. (författare)
  • Guided bone regeneration is promoted by the molecular events in the membrane compartment.
  • 2016
  • Ingår i: Biomaterials. - : Elsevier BV. - 1878-5905 .- 0142-9612. ; 84, s. 167-183
  • Tidskriftsartikel (refereegranskat)abstract
    • The working hypothesis of guided bone regeneration (GBR) is that the membrane physically excludes non-osteogenic tissues from interfering with bone healing. However, the underlying mechanisms are insufficiently explained. This study aimed to investigate the molecular and structural pattern of bone healing in trabecular bone defects, with and without naturally derived resorbable membrane. Defects were created in rat femurs and treated with the membrane or left empty (sham). After 3d, 6d and 28d, the defect sites and membranes were harvested and analyzed with histology, histomorphometry, quantitative-polymerase chain reaction (qPCR), Western blot (WB) and immunohistochemistry (IHC). Histomorphometry demonstrated that the presence of the membrane promoted bone formation in early and late periods. This was in parallel with upregulation of cell recruitment and coupled bone remodeling genes in the defect. Cells recruited into the membrane expressed signals for bone regeneration (BMP-2, FGF-2, TGF-β1 and VEGF). Whereas the native membrane contained FGF-2 but not BMP-2, an accumulation of FGF-2 and BMP-2 proteins and immunoreactive cells were demonstrated by WB and IHC in the invivo implanted membrane. The results provide cellular and molecular evidence suggesting a novel role for the membrane during GBR, by acting as a bioactive compartment rather than a passive barrier.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy