SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ellegård Rada) "

Sökning: WFRF:(Ellegård Rada)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barathan, Muttiah, et al. (författare)
  • Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes
  • 2015
  • Ingår i: Apoptosis (London). - : Springer Verlag (Germany). - 1360-8185 .- 1573-675X. ; 20:4, s. 466-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(A (R)) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.
  •  
2.
  • Bhattacharya, Pradyot, et al. (författare)
  • Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells
  • 2020
  • Ingår i: eLIFE. - Cambridge, United Kingdom : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complementopsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
  •  
3.
  • Crisci, Elisa, et al. (författare)
  • Complement opsonization promotes HSV-2 infection of human dendritic cells
  • 2016
  • Ingår i: Journal of Virology. - : American society of microbiology. - 0022-538X .- 1098-5514. ; 90:10, s. 4939-4950
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpes virus type 2 (HSV2) is one of the most common sexually transmitted infections globally with a very high prevalence in many countries. During HSV2 infection viral particles become coated with complement proteins and antibodies, both existent in the genital fluids, which could influence the activation of the immune responses. In genital mucosa, the primary target cells for HSV2 infection are epithelial cells, but resident immune cells such as dendritic cells (DCs) are also infected. The DCs are the activators of the ensuing immune responses directed against HSV2, and the aim of this study was to examine the effects opsonization of HSV2, either with complement alone or with complement and antibodies, had on the infection of immature DCs and their ability to mount inflammatory and antiviral responses. Complement opsonization of HSV2 enhanced both the direct infection of immature DCs and their production of new infectious viral particles. The enhanced infection required activation of the complement cascade and functional complement receptor 3. Furthermore, HSV2 infection of DCs required endocytosis of viral particles and their delivery into an acid endosomal compartment. The presence of complement in combination with HSV1 or HSV2 specific antibodies more or less abolished the HSV2 infection of DCs.Our results clearly demonstrate the importance of studying HSV2 infection under conditions that ensue in vivo, i.e. when the virions are covered in complement fragments and complement fragments and antibodies, as this will shape the infection and the subsequent immune response and needs to be further elucidated.IMPORTANCE: During HSV2 infection viral particles should become coated with complement proteins and antibodies, both existent in the genital fluids, which could influence the activation of the immune responses. The dendritic cells are the activators of the immune responses directed against HSV2, and the aim of this study was to examine the effects of complement alone or complement and antibodies, on the HSV2 infection of dendritic cells and their ability to mount inflammatory and antiviral responses.Our results demonstrate that the presence of antibodies and complement in the genital environment can influence HSV2 infection under in vitro conditions that reflect the in vivo situation. We believe that our findings are highly relevant for the understanding of HSV2 pathogenesis.
  •  
4.
  • Crisci, Elisa, et al. (författare)
  • HSV-2 Cellular Programming Enables Productive HIV Infection in Dendritic Cells
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Genital herpes is a common sexually transmitted infection caused by herpes simplex virus type 2 (HSV-2). Genital herpes significantly enhances the acquisition and transmission of HIV-1 by creating a microenvironment that supports HIV infection in the host. Dendritic cells (DCs) represent one of the first innate cell types that encounter HIV-1 and HSV-2 in the genital mucosa. HSV-2 infection has been shown to modulate DCs, rendering them more receptive to HIV infection. Here, we investigated the potential mechanisms underlying HSV-2-mediated augmentation of HIV-1 infection. We demonstrated that the presence of HSV-2 enhanced productive HIV-1 infection of DCs and boosted inflammatory and antiviral responses. The HSV-2 augmented HIV-1 infection required intact HSV-2 DNA, but not active HSV-2 DNA replication. Furthermore, the augmented HIV infection of DCs involved the cGAS-STING pathway. Interestingly, we could not see any involvement of TLR2 or TLR3 nor suppression of infection by IFN-beta production. The conditioning by HSV-2 in dual exposed DCs decreased protein expression of IFI16, cGAS, STING, and TBK1, which is associated with signaling through the STING pathway. Dual exposure to HSV-2 and HIV-1 gave decreased levels of several HIV-1 restriction factors, especially SAMHD1, TREX1, and APOBEC3G. Activation of the STING pathway in DCs by exposure to both HSV-2 and HIV-1 most likely led to the proteolytic degradation of the HIV-1 restriction factors SAMHD1, TREX1, and APOBEC3G, which should release their normal restriction of HIV infection in DCs. This released their normal restriction of HIV infection in DCs. We showed that HSV-2 reprogramming of cellular signaling pathways and protein expression levels in the DCs provided a setting where HIV-1 can establish a higher productive infection in the DCs. In conclusion, HSV-2 reprogramming opens up DCs for HIV-1 infection and creates a microenvironment favoring HIV-1 transmission.
  •  
5.
  • Devito, Claudia, et al. (författare)
  • Human IgM monoclonal antibodies block HIV-transmission to immune cells in cervico-vaginal tissues and across polarized epithelial cells in vitro
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of natural IgM antibodies in protection against infections is still emerging and these antibodies have a potential role in the maintenance of homeostasis through clearance of apoptotic bodies, complement-dependent mechanisms, inflammation and exclusion of misfolded proteins. Natural IgM act as a first line of defence against unknown hazardous factors and are present in most vertebrates. We investigated the functional capacity of anti-HIV-1 IgM monoclonal antibodies, from a combinatorial Fab library derived from healthy individuals, and evaluated their protective role in inhibiting HIV-1 in vitro when passing across the human mucosal epithelial barrier. Primary HIV-1 isolates were efficiently transmitted over the tight polarized epithelial cells when added to their apical surface. Efficient inhibition of HIV-1 transmission was achieved when anti-HIV-1 IgM monoclonal antibodies were added to the basolateral side of the cells. Two of these human IgM MoAbs had the ability to neutralize HIV and reduced infection of dendritic cells in primary cervico-vaginal tissue biopsies in vitro. This indicates a potential role of natural IgM antibodies in the reduction of HIV-1 transmission in mucosal tissues and improve our understanding of how natural IgM antibodies against a neutralizing epitope could interfere with viral transmission.
  •  
6.
  • Ellegård, Rada, et al. (författare)
  • Complement Opsonization of HIV-1 Results in Decreased Antiviral and Inflammatory Responses in Immature Dendritic Cells via CR3
  • 2014
  • Ingår i: Journal of Immunology. - : American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 193:9, s. 4590-4601
  • Tidskriftsartikel (refereegranskat)abstract
    • Immature dendritic cells (iDCs) in genital and rectal mucosa may be one of the first cells to come into contact with HIV-1 during sexual transmission of virus. HIV-1 activates the host complement system, which results in opsonization of virus by inactivated complement fragments, for example, iC3b. We investigated antiviral and inflammatory responses induced in human iDCs after exposure to free HIV-1 (F-HIV), complement-opsonized HIV-1 (C-HIV), and complement and Ab-opsonized HIV-1 (CI-HIV). F-HIV gave rise to a significantly higher expression of antiviral factors such as IFN-beta, myxovirus resistance protein A, and IFN-stimulated genes, compared with C-HIV and CI-HIV. Additionally, F-HIV induced inflammatory factors such as IL-1 beta, IL-6, and TNF-alpha, whereas these responses were weakened or absent after C-HIV or CI-HIV exposure. The responses induced by F-HIV were TLR8-dependent with subsequent activation of IFN regulatory factor 1, p38, ERK, PI3K, and NF-kappa B pathways, whereas these responses were not induced by C-HIV, which instead induced activation of IFN regulatory factor 3 and Lyn. This modulation of TLR8 signaling was mediated by complement receptor 3 and led to enhanced infection. The impact that viral hijacking of the complement system has on iDC function could be an important immune evasion mechanism used by HIV-1 to establish infection in the host.
  •  
7.
  • Ellegård, Rada, 1985-, et al. (författare)
  • Complement-Opsonized HIV-1 Alters Cross Talk Between Dendritic Cells and Natural Killer (NK) Cells to Inhibit NK Killing and to Upregulate PD-1, CXCR3, and CCR4 on T Cells
  • 2018
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Dendritic cells (DCs), natural killer (NK) cells, and T cells play critical roles during primary HIV-1 exposure at the mucosa, where the viral particles become coated with complement fragments and mucosa-associated antibodies. The microenvironment together with subsequent interactions between these cells and HIV at the mucosal site of infection will determine the quality of immune response that ensues adaptive activation. Here, we investigated how complement and immunoglobulin opsonization influences the responses triggered in DCs and NK cells, how this affects their cross talk, and what T cell phenotypes are induced to expand following the interaction. Our results showed that DCs exposed to complement-opsonized HIV (C-HIV) were less mature and had a poor ability to trigger IFN-driven NK cell activation. In addition, when the DCs were exposed to C-HIV, the cytotolytic potentials of both NK cells and CD8 T cells were markedly suppressed. The expression of PD-1 as well as co-expression of negative immune checkpoints TIM-3 and LAG-3 on PD-1 positive cells were increased on both CD4 as well as CD8 T cells upon interaction with and priming by NK-DC cross talk cultures exposed to C-HIV. In addition, stimulation by NK-DC cross talk cultures exposed to C-HIV led to the upregulation of CD38, CXCR3, and CCR4 on T cells. Together, the immune modulation induced during the presence of complement on viral surfaces is likely to favor HIV establishment, dissemination, and viral pathogenesis.
  •  
8.
  • Ellegård, Rada, 1985- (författare)
  • Effects of Complement Opsonization of HIV on Dendritic Cells : and Implications for the Immune Response
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dendritic cells are key players during HIV pathogenesis, and shape both the immediate immune response at the site of infection as well as directing the adaptive immune response against the virus. HIV has developed a plethora of immune evasion mechanisms that hijack dendritic cell functions, suppressing their ability to mount an accurate immune response and exploiting them for efficient viral transfer to target T cells.To achieve successful replication within dendritic cells without triggering danger signaling, HIV accomplishes a delicate balance where only a low level of transcription can be sustained without triggering antiviral responses that would harm the virus. Here, we describe how the presence of HSV2 coinfection, which is very common in geographic areas with a high HIV prevalence and almost triples the risk of HIV acquisition, alters dendritic cell state to support much higher levels of HIV infection. We found this effect to be mediated by the STING pathway, which is involved in the sensing of DNA in the cell cytosol. STING activation led to an upregulation of factors such as IRF3 and NFkB that can be used for HIV transcription and a degradation of factors that restrict HIV replication.In addition, we describe how HIV exploits the human complement system, a group of proteins that usually help the human body to identify dangerous pathogens while avoiding reaction towards self. HIV can coat itself, i.e. become opsonized, in complement fragments that are typically only present on the body’s own cells, allowing it to activate signaling pathways that are associated with tolerance. Dendritic cells that come into contact with complement opsonized HIV do not mount danger responses, despite the fact that HIV-derived single stranded RNA triggers the pathogen recognition receptor TLR8. The suppression of danger responses is mediated by activation of complement receptor 3, and leads to an increased infection of the dendritic cell and affects its interactions with other immune cells. There is a lack of recruitment of NK cells to the site of infection, and an inhibition of NK cell killing, which plays an important role in the destruction of HIV-infected cells in vivo. T cells primed by dendritic cells exposed to complement opsonized HIV have a lower ability to develop towards effector phenotype, and have an increased expression of the markers PD1, TIM3 and LAG3 which are associated with T cell dysfunction and exhaustion. In addition, T cells primed by these dendritic cells in the presence of NK cells upregulate markers CD38, CXCR3 and CCR4, which have been linked to an increased susceptibility to HIV infection.In summary, we add to the current knowledge on HIV immune evasion mechanisms that allow the virus to establish infection, as well as describing mechanisms that govern whether dendritic cells mount danger signaling and an immune response or not.  
  •  
9.
  • Ellegård, Rada, et al. (författare)
  • Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1
  • 2015
  • Ingår i: Journal of Immunology. - : American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 195:4, s. 1698-1704
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFN gamma and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.
  •  
10.
  • Ellegård, Rada, et al. (författare)
  • Targeting HIV-1 innate immune responses therapeutically
  • 2011
  • Ingår i: Current Opinion in HIV & AIDS. - : Lippincott, Williams and Wilkins. - 1746-630X. ; 6:5, s. 435-443
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose of review less thanbrgreater than less thanbrgreater thanThe early stage of HIV-1 infection is when the virus is most vulnerable, and should therefore offer the best opportunity for therapeutic interventions. This review addresses the recent progress in the understanding of innate immune responses against HIV-1 with focus on the potential targets for prevention of viral acquisition, replication and dissemination. less thanbrgreater than less thanbrgreater thanRecent findings less thanbrgreater than less thanbrgreater thanResearch indicates that the host-derived factor trappin-2/elafin is protective against HIV, whereas semen-derived enhancer of viral infection and defensins 5 and 6 enhance viral transmission. Further, studies suggest that stimulation of TLR4 and inhibition of TLR7-9 pathways may be HIV suppressive. The regulation and function of viral restriction factors tetherin and APOBEC3G have been investigated and a molecule mimicking the premature uncoating achieved by TRIM5 alpha, PF74, has been identified. Chloroquine has been shown to inhibit plasmacytoid dendritic cell activation and suppress negative modulators of T-cell responses. Blockade of HMBG1 has been found to restore natural-killer-cell-mediated killing of infected dendritic cells, normally suppressed by HIV-1. Interestingly, when used as adjuvants, EAT-2 and heat shock protein gp96 reportedly enhance innate immune responses. less thanbrgreater than less thanbrgreater thanSummary less thanbrgreater than less thanbrgreater thanSeveral targets for innate immunity-mediated therapeutics have been identified. Nonetheless, more research is required to unveil their underlying mechanisms and interactions before testing these molecules in clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (20)
forskningsöversikt (3)
annan publikation (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Larsson, Marie (22)
Ellegård, Rada (20)
Shankar, Esaki M. (11)
Hinkula, Jorma (9)
Nyström, Sofia (8)
Lifson, Jeffrey D. (5)
visa fler...
Kamarulzaman, Adeeba (4)
Velu, Vijayakumar (4)
Fernlund, Eva (3)
Green, Henrik (3)
Barathan, Muttiah (3)
Saeidi, Alireza (3)
Gunnarsson, Cecilia, ... (2)
Karlsson, Jan-Erik (2)
Kissopoulou, Antheia (2)
Kjölhede, Preben (2)
Borendal Wodlin, Nin ... (2)
Vignesh, Ramachandra ... (2)
Che, Karlhans F. (2)
Jonasson, Jon (1)
Olsson, Hans (1)
Stendahl, Olle (1)
Blomgran, Robert (1)
Söderholm, Johan D., ... (1)
Myrelid, Pär (1)
Larsson, Marie, 1966 ... (1)
Andersson, Jonas (1)
Sjöwall, Christopher (1)
Yong, Yean K. (1)
Tan, Hong Y. (1)
Ansari, Abdul W. (1)
Svensson, Lennart (1)
Singh, Susmita K. (1)
Ohlin, Mats (1)
Söderholm, Johan D (1)
Andersson, Anna-Mari ... (1)
Andersson, Oskar (1)
Bergström, Tomas (1)
Gunnarsson, Cecilia (1)
Eriksson, Kristina, ... (1)
Svensson, Anneli (1)
Mohamed, Rosmawati (1)
Hinkula, Jorma, 1958 ... (1)
Vadivelu, Jamuna (1)
Gopal, Kaliappan (1)
Rothan, Hussin A. (1)
Ram, M. Ravishankar (1)
Zandi, Keivan (1)
Chang, Li Y. (1)
Kamarul, Tunku (1)
visa färre...
Lärosäte
Linköpings universitet (26)
Karolinska Institutet (9)
Lunds universitet (3)
Göteborgs universitet (1)
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy