SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elmabsout Ali Ateia) "

Sökning: WFRF:(Elmabsout Ali Ateia)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Basic, Vladimir Tomislav, et al. (författare)
  • Exposure to cigarette smoke induces overexpression of von Hippel-Lindau tumor suppressor in mouse skeletal muscle
  • 2012
  • Ingår i: American Journal of Physiology - Lung cellular and Molecular Physiology. - Bethesda, USA : American Physiological Society. - 1040-0605 .- 1522-1504. ; 303:6, s. L519-L527
  • Tidskriftsartikel (refereegranskat)abstract
    • Cigarette smoke (CS) is a well established risk factor in the development of chronic obstructive pulmonary disease (COPD). In contrast, the extent to which CS exposure contributes to the development of the systemic manifestations of COPD, such as skeletal muscle dysfunction and wasting remains largely unknown. Decreased skeletal muscle capillarization has been previously reported in early stages of COPD and might play an important role in the development of COPD-associated skeletal muscle abnormalities. To investigate the effects of chronic CS exposure on skeletal muscle capillarization and exercise tolerance a mouse model of CS exposure was used. The129/SvJ mice were exposed to CS for 6 months, and the expression of putative elements of the hypoxia-angiogenic signaling cascade as well as muscle capillarization were studied. Additionally, functional tests assessing exercise tolerance/endurance were performed in mice. Compared to controls, skeletal muscles from CS-exposed mice exhibited significantly enhanced expression of von Hippel-Lindau tumor suppressor (VHL), ubiquitin-conjugating enzyme E2D1 (UBE2D1) and prolyl hydroxylase-2 (PHD2). In contrast, hypoxia-inducible factor-1 (HIF1-α) and vascular endothelial growth factor (VEGF) expression was reduced. Furthermore, reduced muscle fiber cross-sectional area, decreased skeletal muscle capillarization, and reduced exercise tolerance were also observed in CS-exposed animals. Taken together, the current results provide evidence linking chronic CS exposure and induction of VHL expression in skeletal muscles leading towards impaired hypoxia-angiogenesis signal transduction, reduced muscle fiber cross-sectional area and decreased exercise tolerance.
  •  
3.
  • Bilbija, Dusan, et al. (författare)
  • Expression of retinoic acid target genes in coronary artery disease
  • 2014
  • Ingår i: International Journal of Molecular Medicine. - Athens, Greece : Spandidos Publications. - 1107-3756 .- 1791-244X. ; 33:3, s. 677-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary atherosclerosis can lead to myocardial infarction, and secondarily to post-infarct remodelling and heart failure. Retinoic acid (RA) influences cell proliferation. We hypothesized that RA could influence gene expression and proliferation of cardiovascular cells. Left ventricular biopsies from patients with end-stage heart failure due to coronary artery disease (CAD) or dilated cardiomyopathy were investigated for the content of RA metabolites using liquid chromatography mass spectrometry (LC-MS/MS), and compared with healthy donors. All-trans retinoic acid (ATRA) was increased in the hearts of CAD patients. Gene expression (quantitative PCR) of RA target genes was not influenced in failing hearts, but was increased in the hearts of patients with CAD undergoing open heart surgery. The expression of RA target genes was increased in atherosclerotic lesions from carotid arteries compared to healthy arteries. Stimulation of cardiomyocytes, cardiofibroblasts, smooth muscle cells and endothelial cells with ATRA increased the gene expression of the key enzymes. Cardiofibroblast and smooth muscle cell proliferation were reduced by ATRA, which increased endothelial cell proliferation. Coronary artery disease leads to increased expression of RA target genes. ATRA accumulated in the failing human heart. All investigated cell types present in the heart had induced expression of RA target genes when stimulated with ATRA, which also influenced cell proliferation.
  •  
4.
  • Elmabsout, Ali Ateia, et al. (författare)
  • Cloning and Functional Studies of a Splice Variant of CYP26B1 Expressed in Vascular Cells
  • 2012
  • Ingår i: Plos One. - San Francisco, USA : Public Library of Science (PLoS). - 1932-6203. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: All-trans retinoic acid (atRA) plays an essential role in the regulation of gene expression, cell growth and differentiation and is also important for normal cardiovascular development but may in turn be involved in cardiovascular diseases, i.e. atherosclerosis and restenosis. The cellular atRA levels are under strict control involving several cytochromes P450 isoforms (CYPs). CYP26 may be the most important regulator of atRA catabolism in vascular cells. The present study describes the molecular cloning, characterization and function of atRA-induced expression of a spliced variant of the CYP26B1 gene. Methodology/Principal Findings: The coding region of the spliced CYP26B1 lacking exon 2 was amplified from cDNA synthesized from atRA-treated human aortic smooth muscle cells and sequenced. Both the spliced variant and full length CYP26B1 was found to be expressed in cultured human endothelial and smooth muscle cells, and in normal and atherosclerotic vessel. atRA induced both variants of CYP26B1 in cultured vascular cells. Furthermore, the levels of spliced mRNA transcript were 4.5 times higher in the atherosclerotic lesion compared to normal arteries and the expression in the lesions was increased 20-fold upon atRA treatment. The spliced CYP26B1 still has the capability to degrade atRA, but at an initial rate one-third that of the corresponding full length enzyme. Transfection of COS-1 and THP-1 cells with the CYP26B1 spliced variant indicated either an increase or a decrease in the catabolism of atRA, probably depending on the expression of other atRA catabolizing enzymes in the cells. Conclusions/Significance: Vascular cells express the spliced variant of CYP26B1 lacking exon 2 and it is also increased in atherosclerotic lesions. The spliced variant displays a slower and reduced degradation of atRA as compared to the full-length enzyme. Further studies are needed, however, to clarify the substrate specificity and role of the CYP26B1 splice variant in health and disease.
  •  
5.
  • Elmabsout, Ali Ateia, 1977- (författare)
  • CYP26B1 as regulator of retinoic acid in vascular cells and atherosclerotic lesions
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cardiovascular disease (CVD), currently the most common cause of morbidity and mortality worldwide, is caused mainly by atherosclerosis. Atherosclerosis is a chronic multifocal, immunoinflammatory, fibroproliferative disease of medium and large arteries. Atherosclerotic lesions and vascular cells express different genes, among these are genes regulated by retinoic acid. Retinoids have pleiotropic effects and are able to modulate gene expression involved in growth, function and adaptation. During atherosclerosis development, there is endothelial perturbation, lipid accumulation, attraction of immune cells, smooth muscle cell migration and extracellular matrix remodeling and eventually fibrous cap formation which results in plaques. Retinoids have been demonstrated to either inhibit or modulate the above processes, resulting in amelioration of atherosclerosis. So far, retinoids are known to have impact on cellular processes in SMC, vascular injury and atherosclerosis. However, little is known about catabolism of retinoids in vascular cells and lesions and the effects of alteration of retinoic catabolizing enzymes on retinoids’ status. Therefore, we investigated the expression of Cytochrome P450 26 (CYP26) which is thought to be dedicated to retinoid catabolism. In vascular SMCs and atherosclerotic lesions, we found that CYP26B1 was the only member of the CYP26 family expressed, and it was highly inducible by atRA. Our data revealed that blocking CYP26B1 by chemical inhibition, or by targeted siRNA knock-down, resulted in significantly increased cellular retinoid levels. This indicates that CYP26B1 is an important modulator of endogenous retinoic acid levels. Therefore, we studied the effect of the CYP26B1 nonsynonymous polymorphism rs224105 on retinoic acid availability and found that the minor allele was associated with an enhanced retinoic acid catabolism rate and also with a slightly larger area of atherosclerotic lesions. The expression of CYP26B1 in human atherosclerotic lesions was localized to macrophage rich areas, suggesting retinoic acid activity in macrophages. Furthermore, we demonstrated that a CYP26B1 splice variant, that lack exon two, is expressed in vascular cells and in vessels walls. It is functional, with a reduced catabolic activity to around 70%, inducible by atRA in vascular cells and expressed 4.5 times more in atherosclerotic lesions compared to normal arteries. Moreover, the statins simvastatin and rosuvastatin reduced CYP26B1 mediated atRA catabolism in a concentration-dependent manner, and in vascular cells increased the mRNA expression of the atRA-responsive genes CYP26B1 and RARβ. This could lead to statins indirectly augmenting retinoic acid action in vascular cells which mimic statins roles. In conclusion, CYP26B1 is a major retinoic acid modulator in vascular cells and atherosclerotic lesions. Blocking of CYP26B1 could provide an advantageous therapeutic alternative to exogenous retinoid administration for treatment of vascular disorders.
  •  
6.
  •  
7.
  • Krivospitskaya, Olesya, 1983-, et al. (författare)
  • A CYP26B1 polymorphism enhances retinoic acid catabolism and may aggravate atherosclerosis
  • 2012
  • Ingår i: Molecular Medicine. - New York, USA : The Feinstein Institute for Medical Research. - 1076-1551 .- 1528-3658. ; 18:1, s. 712-718
  • Tidskriftsartikel (refereegranskat)abstract
    • All-trans retinoic acid, controlled by CYP26 enzymes, potentially has beneficial effects in atherosclerosis treatment. This study investigates CYP26B1 in atherosclerosis and effects of a genetic polymorphism in CYP26B1 on retinoid catabolism. We found that CYP26B1 mRNA was induced by retinoic acid in human atherosclerotic arteries and CYP26B1 and the macrophage marker CD68 co-localized in human atherosclerotic lesions. In mice, Cyp26B1 mRNA was higher in atherosclerotic than normal arteries. Databases were queried for non-synonymous CYP26B1 SNPs and rs2241057 selected for further studies. Constructs of the CYP26B1 variants were created and used for production of purified proteins and transfection of macrophage-like cells. The minor variant catabolized retinoic acid with significantly higher efficiency, indicating that rs2241057 is functional and suggesting reduced retinoid availability in tissues with the minor variant. rs2241057 was investigated in a Stockholm Coronary Atherosclerosis Risk Factor (SCARF) subgroup. The minor allele was associated with slightly larger lesions as determined by angiography. In summary, this study identifies the first CYP26B1 polymorphism that alters CYP26B1 capacity to metabolize retinoic acid. CYP26B1 was expressed in macrophage-rich areas of human atherosclerotic lesions, induced by retinoic acid and increased in murine atherosclerosis. Taken together, the results indicate that CYP26B1 capacity is genetically regulated and suggest that local CYP26B1 activity may influence atherosclerosis.
  •  
8.
  • Nixon Tangi, Tebeng, et al. (författare)
  • Role of NLRP3 and CARD8 in the regulation of TNF-α induced IL-1β release in vascular smooth muscle cells
  • 2012
  • Ingår i: International Journal of Molecular Medicine. - Athens, Greece : Spandidos Publications. - 1107-3756 .- 1791-244X. ; 30:3, s. 697-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-1β is known to be activated by the inflammasome. Inflammasome activities depend on a plethora of moieties including NLRP3 and CARD8, which have been reported to be associated with several inflammatory diseases. Aortic smooth muscle cells (AOSMCs) were transfected with siRNA targeting the NLRP3 and CARD8 genes, followed by tumor necrosis factor-α (TNF-α) treatment. We found that TNF-α induces IL-1β, IL-1Ra and NLRP3 genes but not CARD8. Silencing of the NLRP3 gene significantly decreased IL-1β expression and release, the IL-1Ra expression showed a borderline non-significant increment, while CARD8 knockdown did not affect the IL-1β and IL-1Ra mRNA expression or IL-1β protein release. Our results suggest that mainly NLRP3 plays a role in the regulation of IL-1β expression and release in AOSMC and could be a potential future target for the treatment of atherosclerosis and other inflammatory diseases.
  •  
9.
  • Ocaya, Pauline Ajok, 1977-, et al. (författare)
  • CYP26B1 plays a major role in the regulation of all-trans-retinoic acid metabolism and signaling in human aortic smooth muscle cells
  • 2011
  • Ingår i: Journal of Vascular Research. - : S. Karger. - 1018-1172 .- 1423-0135. ; 48:1, s. 23-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The cytochrome P450 enzymes of the CYP26 family are involved in the catabolism of the biologically active retinoid all-trans-retinoic acid (atRA). Since it is possible that an increased local CYP26 activity would reduce the effects of retinoids in vascular injury, we investigated the role of CYP26 in the regulation of atRA levels in human aortic smooth muscle cells (AOSMCs).Methods: The expression of CYP26 was investigated in cultured AOSMCs using real-time PCR. The metabolism of atRA was analyzed by high-performance liquid chromatography, and the inhibitor R115866 or small interfering RNA (siRNA) was used to suppress CYP26 activity/expression.Results: AOSMCs expressed CYP26B1 constitutively and atRA exposure augmented CYP26B1 mRNA levels. Silencing of the CYP26B1 gene expression or reduction of CYP26B1 enzymatic activity by using siRNA or the inhibitor R115866, respectively, increased atRA-mediated signaling and resulted in decreased cell proliferation. The CYP26 inhibitor also induced expression of atRA-responsive genes. Therefore, atRA-induced CYP26 expression accelerated atRA inactivation in AOSMCs, giving rise to an atRA-CYP26 feedback loop. Inhibition of this loop with a CYP26 inhibitor increased retinoid signaling.Conclusion: The results suggest that CYP26 inhibitors may be a therapeutic alternative to exogenous retinoid administration. Copyright (C) 2010 S. Karger AG, Basel
  •  
10.
  • Saenz Mendez, Patricia, et al. (författare)
  • Homology models of human all-trans retinoic acid metabolizing enzymes CYP26B1 and CYP26B1 spliced-variant.
  • 2012
  • Ingår i: Journal of Chemical Information and Modeling. - Washington, USA : American Chemical Society (ACS). - 1549-9596 .- 1549-960X. ; 52:10, s. 2631-2637
  • Tidskriftsartikel (refereegranskat)abstract
    • Homology models of CYP26B1 (cytochrome P450RAI2) and CYP26B1 spliced variant were derived using the crystal structure of cyanobacterial CYP120A1 as template for the model building. The quality of the homology models generated were carefully evaluated, and the natural substrate all-trans-retinoic acid (atRA), several tetralone-derived retinoic acid metabolizing blocking agents (RAMBAs), and a well-known potent inhibitor of CYP26B1 (R115866) were docked into the homology model of full-length cytochrome P450 26B1. The results show that in the model of the full-length CYP26B1, the protein is capable of distinguishing between the natural substrate (atRA), R115866, and the tetralone derivatives. The spliced variant of CYP26B1 model displays a reduced affinity for atRA compared to the full-length enzyme, in accordance with recently described experimental information.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (9)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Sirsjö, Allan, 1959- (7)
Elmabsout, Ali Ateia ... (7)
Törmä, Hans (4)
Elmabsout, Ali Ateia (4)
Bengtsson, Torbjörn, ... (2)
Eriksson, Leif A, 19 ... (2)
visa fler...
Saenz Mendez, Patric ... (2)
Rahman, Irfan (2)
Abdel-Halim, Samy M. ... (2)
Sirsjö, Allan (2)
Olofsson, Peder S. (2)
Sundman, Eva (2)
Strid, Åke, 1960- (2)
Fransén, Karin, 1973 ... (2)
Eriksson, Per (1)
Gullestad, Lars (1)
Scherbak, Nikolai, 1 ... (1)
Blomhoff, Rune (1)
Samnegård, Ann (1)
Kruse, Robert, 1972- (1)
Jansson, Jan-Håkan (1)
Haugen, Fred (1)
Abdel-Halim, Samy M. (1)
Awadalla, M. K. A. (1)
Basic, Vladimir T., ... (1)
Tadele, Elsa (1)
Basic, Vladimir T. (1)
Sirjso, Allan (1)
Basic, Vladimir Tomi ... (1)
Yao, Hongwei (1)
Khalaf, Hazem, 1981- (1)
Bilbija, Dusan (1)
Sagave, Julia (1)
Bastani, Nasser (1)
Dahl, Christen Peder (1)
Valen, Guro (1)
Sävenstrand, Helena (1)
Valen, G (1)
Olofsson, P. S. (1)
Norata, Giuseppe Dan ... (1)
Kumawat, Ashok K. (1)
Krivospitskaya, Oles ... (1)
Sirsjö, Allan, Profe ... (1)
Fransén, Karin (1)
Håkansson, Helen, Pr ... (1)
Karikas, George (1)
Gidlöf, Andreas C. (1)
Jayaprakash, Karthey ... (1)
Krivospitskaya, Oles ... (1)
Söderström, Leif A. (1)
visa färre...
Lärosäte
Örebro universitet (10)
Uppsala universitet (4)
Karolinska Institutet (3)
Göteborgs universitet (2)
Karlstads universitet (2)
Umeå universitet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy