SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elmi A) "

Sökning: WFRF:(Elmi A)

  • Resultat 1-10 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Burstrom, G, et al. (författare)
  • Feasibility and accuracy of a robotic guidance system for navigated spine surgery in a hybrid operating room: a cadaver study
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 7522-
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of navigation and robotics in spine surgery has the potential to accurately identify and maintain bone entry position and planned trajectory. The goal of this study was to examine the feasibility, accuracy and efficacy of a new robot-guided system for semi-automated, minimally invasive, pedicle screw placement. A custom robotic arm was integrated into a hybrid operating room (OR) equipped with an augmented reality surgical navigation system (ARSN). The robot was mounted on the OR-table and used to assist in placing Jamshidi needles in 113 pedicles in four cadavers. The ARSN system was used for planning screw paths and directing the robot. The robot arm autonomously aligned with the planned screw trajectory, and the surgeon inserted the Jamshidi needle into the pedicle. Accuracy measurements were performed on verification cone beam computed tomographies with the planned paths superimposed. To provide a clinical grading according to the Gertzbein scale, pedicle screw diameters were simulated on the placed Jamshidi needles. A technical accuracy at bone entry point of 0.48 ± 0.44 mm and 0.68 ± 0.58 mm was achieved in the axial and sagittal views, respectively. The corresponding angular errors were 0.94 ± 0.83° and 0.87 ± 0.82°. The accuracy was statistically superior (p < 0.001) to ARSN without robotic assistance. Simulated pedicle screw grading resulted in a clinical accuracy of 100%. This study demonstrates that the use of a semi-automated surgical robot for pedicle screw placement provides an accuracy well above what is clinically acceptable.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Cewe, P, et al. (författare)
  • Radiation distribution in a hybrid operating room, utilizing different X-ray imaging systems: investigations to minimize occupational exposure
  • 2022
  • Ingår i: Journal of neurointerventional surgery. - : BMJ. - 1759-8486 .- 1759-8478. ; 14:11, s. 1139-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • To reduce occupational radiation exposure in a hybrid operating room (OR) used for three-dimensional (3D) image guided spine procedures. The effects of staff positioning, different X-ray imaging systems, and freestanding radiation protection shields (RPSs) were considered.MethodsAn anthropomorphic phantom was imaged with a robotic ceiling mounted hybrid OR C-arm cone beam CT (hCBCT), a mobile O-arm CBCT (oCBCT), and a mobile two-dimensional C-arm fluoroscopy system. The resulting scatter doses were measured at different positions in the hybrid OR using active personal dosimeters and an ionization chamber. Two types of RPSs were evaluated.ResultsUsing the hCBCT system instead of the oCBCT system reduced the occupational radiation dose on average by 22%. At 200 cm from the phantom, scatter doses from the hCBCT were 27% lower compared with the oCBCT. One rotational acquisition with hCBCT or oCBCT corresponded to 12 or 16 min of fluoroscopy with the C-arm, respectively. The scatter dose decreased by more than 90% behind an RPS. However, the protection was slightly less effective at 60 cm behind the RPS, due to tertiary scatter from the surroundings.ConclusionsFor 3D image guided spine procedures in the hybrid OR, occupational radiation exposure is lowered by using hCBCT rather than oCBCT. Radiation exposure can also be decreased by optimal staff positioning in the OR, considering distance to the source and positioning relative to the walls, ceiling, and RPS. In this setting and workflow, staff can use RPSs instead of heavy aprons during intraoperative CBCT imaging, to achieve effective whole body dose reduction with improved comfort.
  •  
8.
  • de Kater, EP, et al. (författare)
  • Beyond the pedicle screw-a patent review
  • 2022
  • Ingår i: European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. - 1432-0932.
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 81

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy