SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elmore Charles S.) "

Sökning: WFRF:(Elmore Charles S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cairns, Andrew G., et al. (författare)
  • Increased Brain Exposure of an Alpha-Synuclein Fibrillization Modulator by Utilization of an Activated Ester Prodrug Strategy
  • 2018
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 9:11, s. 2542-2547
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous work in our laboratories has identified a series of peptidomimetic 2-pyridone molecules as modulators of alpha-synuclein (α-syn) fibrillization in vitro. As a first step toward developing molecules from this scaffold as positron emission tomography imaging agents, we were interested in evaluating their blood-brain barrier permeability in nonhuman primates (NHP) in vivo. For this purpose, 2-pyridone 12 was prepared and found to accelerate α-syn fibrillization in vitro. Acid 12, and its acetoxymethyl ester analogue 14, were then radiolabeled with 11C (t1/2 = 20.4 min) at high radiochemical purity (>99%) and high specific radioactivity (>37 GBq/μmol). Following intravenous injection of each compound in NHP, a 4-fold higher radioactivity in brain was observed for [11C]14 compared to [11C]12 (0.8 vs 0.2 SUV, respectively). [11C]14 was rapidly eliminated from plasma, with [11C]12 as the major metabolic product observed by radio-HPLC. The presented prodrug approach paves the way for future development of 2-pyridones as imaging biomarkers for in vivo imaging of α-synuclein deposits in brain.
  •  
3.
  • Sebastiani, Federica, et al. (författare)
  • Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:4, s. 6709-6722
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid. The structural characterization of mRNA-containing LNPs (mRNA-LNPs) is crucial for a full understanding of the way in which they function, but this information alone is not enough to predict their fate upon entering the bloodstream. The biodistribution and cellular uptake of LNPs are affected by their surface composition as well as by the extracellular proteins present at the site of LNP administration, e.g., apolipoproteinE (ApoE). ApoE, being responsible for fat transport in the body, plays a key role in the LNP’s plasma circulation time. In this work, we use small-angle neutron scattering, together with selective lipid, cholesterol, and solvent deuteration, to elucidate the structure of the LNP and the distribution of the lipid components in the absence and the presence of ApoE. While DSPC and cholesterol are found to be enriched at the surface of the LNPs in buffer, binding of ApoE induces a redistribution of the lipids at the shell and the core, which also impacts the LNP internal structure, causing release of mRNA. The rearrangement of LNP components upon ApoE incubation is discussed in terms of potential relevance to LNP endosomal escape. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy