SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elsukova Anna) "

Sökning: WFRF:(Elsukova Anna)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ravensburg, Anna Lena, 1994-, et al. (författare)
  • Boundary-induced phase in epitaxial iron layers
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We report the discovery of a boundary-induced body-centered tetragonal (bct) iron phase in thin films deposited on MgAl2O4 (001) substrates. We present evidence for this phase using detailed x-ray analysis and ab-initio density functional theory calculations. A lower magnetic moment and a rotation of the easy magnetisation direction are observed, as compared to body-centered cubic (bcc) iron. Our findings expand the range of known crystal and magnetic phases of iron, providing valuable insights for the development of heterostructure devices using ultra-thin iron layers. 
  •  
2.
  • Alnoor, Hatim, et al. (författare)
  • Exploring MXenes and their MAX phase precursors by electron microscopy
  • 2021
  • Ingår i: Materials Today Advances. - : Elsevier. - 2590-0498. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • This review celebrates the width and depth of electron microscopy methods and how these have enabled massive research efforts on MXenes. MXenes constitute a powerful recent addition to 2-dimensional materials, derived from their parent family of nanolaminated materials known as MAX phases. Owing to their rich chemistry, MXenes exhibit properties that have revolutionized ranges of applications, including energy storage, electromagnetic interference shielding, water filtering, sensors, and catalysis. Few other methods have been more essential in MXene research and development of corresponding applications, compared with electron microscopy, which enables structural and chemical identification at the atomic scale. In the following, the electron microscopy methods that have been applied to MXene and MAX phase precursor research are presented together with research examples and are discussed with respect to advantages and challenges.
  •  
3.
  • Chen, Mengyun, et al. (författare)
  • Kinetically Controlled Synthesis of Quasi-Square CsPbI3 Nanoplatelets with Excellent Stability
  • 2023
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoplatelets (NPLs) share excellent luminescent properties with their symmetric quantum dots counterparts and entail special characters benefiting from the shape, like the thickness-dependent bandgap and anisotropic luminescence. However, perovskite NPLs, especially those based on iodide, suffer from poor spectral and phase stability. Here, stable CsPbI3 NPLs obtained by accelerating the crystallization process in ambient-condition synthesis are reported. By this kinetic control, the rectangular NPLs into quasi-square NPLs are tuned, where enlarged width endows the NPLs with a lower surface-area-to-volume ratio (S/V ratio), leading to lower surficial energy and thus improved endurance against NPL fusion (cause for spectral shift or phase transformation). The accelerated crystallization, denoting the fast nucleation and short period of growth in this report, is enabled by preparing a precursor with complete transformation of PbI2 into intermediates (PbI3-), through an additional iodide supplier (e.g., zinc iodide). The excellent color stability of the materials remains in the light-emitting diodes under various bias stresses.
  •  
4.
  • Ekström, Erik, 1989-, et al. (författare)
  • Epitaxial Growth of CaMnO3-y Films on LaAlO3 (112 over bar 0) by Pulsed Direct Current Reactive Magnetron Sputtering
  • 2022
  • Ingår i: Physica Status Solidi. Rapid Research Letters. - : Wiley-V C H Verlag GMBH. - 1862-6254 .- 1862-6270. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • CaMnO3 is a perovskite with attractive magnetic and thermoelectric properties. CaMnO3 films are usually grown by pulsed laser deposition or radio frequency magnetron sputtering from ceramic targets. Herein, epitaxial growth of CaMnO3-y (002) films on a (112 over bar 0)-oriented LaAlO3 substrate using pulsed direct current reactive magnetron sputtering is demonstrated, which is more suitable for industrial scale depositions. The CaMnO3-y shows growth with a small in-plane tilt of <approximate to 0.2 degrees toward the (200) plane of CaMnO3-y and the (1 over bar 104) with respect to the LaAlO3 (112 over bar 0) substrate. X-ray photoelectron spectroscopy of the electronic core levels shows an oxygen deficiency described by CaMnO2.58 that yields a lower Seebeck coefficient and a higher electrical resistivity when compared to stoichiometric CaMnO3. The LaAlO3 (112 over bar 0) substrate promotes tensile-strained growth of single crystals. Scanning transmission electron microscopy and electron energy loss spectroscopy reveal antiphase boundaries composed of Ca on Mn sites along and , forming stacking faults.
  •  
5.
  • Ekström, Erik, et al. (författare)
  • Microstructure control and property switching in stress-free van der Waals epitaxial VO2 films on mica
  • 2023
  • Ingår i: Materials & design. - : ELSEVIER SCI LTD. - 0264-1275 .- 1873-4197. ; 229
  • Tidskriftsartikel (refereegranskat)abstract
    • Realizing stress-free inorganic epitaxial films on weakly bonding substrates is of importance for applications that require film transfer onto surfaces that do not seed epitaxy. Film-substrate bonding is usually weakened by harnessing natural van der Waals layers (e.g., graphene) on substrate surfaces, but this is difficult to achieve in non-layered materials. Here, we demonstrate van der Waals epitaxy of stress-free films of a non-layered material VO2 on mica. The films exhibit out-of-plane 010 texture with three inplane orientations inherited from the crystallographic domains of the substrate. The lattice parameters are invariant with film thickness, indicating weak film-substrate bonding and complete interfacial stress relaxation. The out-of-plane domain size scales monotonically with film thickness, but the in-plane domain size exhibits a minimum, indicating that the nucleation of large in-plane domains supports subsequent island growth. Complementary ab initio investigations suggest that VO2 nucleation and van der Waals epitaxy involves subtle polarization effects around, and the active participation of, surface potassium atoms on the mica surface. The VO2 films show a narrow domain-size-sensitive electrical-conductiv ity-temperature hysteresis. These results offer promise for tuning the properties of stress-free van der Waals epitaxial films of non-layered materials such as VO2 through microstructure control (C) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
6.
  • Halim, Joseph, et al. (författare)
  • Tailored synthesis approach of (Mo2/3Y1/3)(2)AlC i-MAX and its two-dimensional derivative Mo1.33CTz MXene: enhancing the yield, quality, and performance in supercapacitor applications
  • 2021
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 13:1, s. 311-319
  • Tidskriftsartikel (refereegranskat)abstract
    • A vacancy-ordered MXene, Mo1.33CTz, obtained from the selective etching of Al and Sc from the parent i-MAX phase (Mo2/3Sc1/3)(2)AlC has previously shown excellent properties for supercapacitor applications. Attempts to synthesize the same MXene from another precursor, (Mo2/3Y1/3)(2)AlC, have not been able to match its forerunner. Herein, we show that the use of an AlY2.3 alloy instead of elemental Al and Y for the synthesis of (Mo2/3Y1/3)(2)AlC i-MAX, results in a close to 70% increase in sample purity due to the suppression of the main secondary phase, Mo3Al2C. Furthermore, through a modified etching procedure, we obtain a Mo1.33CTz MXene of high structural quality and improve the yield by a factor of 6 compared to our previous efforts. Free-standing films show high volumetric (1308 F cm(-3)) and gravimetric (436 F g(-1)) capacitances and a high stability (98% retention) at the level of, or even beyond, those reported for the Mo1.33CTz MXene produced from the Sc-based i-MAX. These results are of importance for the realization of high quality MXenes through use of more abundant elements (Y vs. Sc), while also reducing waste (impurity) material and facilitating the synthesis of a high-performance material for applications.
  •  
7.
  • Mustafa, Elfatih Mohammed, et al. (författare)
  • Efficient CuO/Ag2WO4 photoelectrodes for photoelectrochemical water splitting using solar visible radiation
  • 2023
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 13:17, s. 11297-11310
  • Tidskriftsartikel (refereegranskat)abstract
    • Water splitting energy production relies heavily on the development of high-performance photoelectrochemical cells (PECs). Among the most highly regarded semiconductor materials, cupric oxide (CuO) is an excellent photocathode material. Pristine CuO does not perform well as a photocathode due to its tendency to recombine electrons and holes rapidly. Photocathodes with high efficiency can be produced by developing CuO-based composite systems. The aim of our research is to develop an Ag2WO4/CuO composite by incorporating silver tungstate (Ag2WO4) nanoparticles onto hydrothermally grown CuO nanoleaves (NLs) by successive ionic layer adsorption and reaction (SILAR). To prepare CuO/Ag2WO4 composites, SILAR was used in conjunction with different Ag2WO4 nanoparticle deposition cycles. Physicochemical characterization reveals well-defined nanoleaves morphologies with tailored surface compositions. Composite CuO/Ag2WO4 crystal structures are governed by the monoclinic phase of CuO and the hexagonal phase of Ag2WO4. It has been demonstrated that the CuO/Ag2WO4 composite has outstanding performance in the PEC water splitting process when used with five cycles. In the CuO/Ag2WO4 photocathode, water splitting activity is observed at low overpotential and high photocurrent density, indicating that the reaction takes place at low energy barriers. Several factors contribute to PEC performance in composites. These factors include the high density of surface active sites, the high charge separation rate, the presence of favourable surface defects, and the synergy of CuO and Ag2WO4 photoreaction. By using SILAR, silver tungstate can be deposited onto semiconducting materials with strong visible absorption, enabling the development of energy-efficient photocathodes.
  •  
8.
  • Shu, Rui, et al. (författare)
  • Solid-State Janus Nanoprecipitation Enables Amorphous-Like Heat Conduction in Crystalline Mg3Sb2-Based Thermoelectric Materials
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:25
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, unconventional Janus-type nanoprecipitates are uncovered in Mg3Sb1.5Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.
  •  
9.
  • Singh, Niraj Kumar, et al. (författare)
  • Electron-phonon coupling and quantum correction to topological magnetoconductivity in Bi2GeTe4
  • 2022
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 105:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report structure, vibrational properties, and weak antilocalization-induced quantum correction to magnetoconductivity in single-crystal Bi2GeTe4. Surface band-structure calculations show a single Dirac cone corresponding to topological surface states in Bi2GeTe4. An estimated phase coherence length, lΦ ~ to 143 nm and prefactor α~-1.54 from Hikami-Larkin-Nagaoka fitting of magnetoconductivity describe the quantum correction to conductivity. An anomalous temperature dependence of A1g Raman modes confirms enhanced electron-phonon interactions. Our results establish that electrons of the topological state can interact with the phonons involving the vibrations of Bi-Te in Bi2GeTe4.
  •  
10.
  • Thorsteinsson, E. B., et al. (författare)
  • Room temperature ferromagnetism in the nanolaminated MAX phase (Mn1−xCrx)2GaC
  • 2023
  • Ingår i: APL Materials. - : AIP Publishing. - 2166-532X. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • MAX phases are a class of intrinsically nanolaminated materials, which combine features of metals and ceramics, owing to the alternating metallic and covalent bonding between atomic layers. Magnetic MAX phases have been known for a decade, but ferromagnetism at room temperature in this highly anisotropic system has been elusive, limiting their value as magnets in practice. Here, we show that a MAX phase with a strong ferromagnetic response is obtained by substituting Mn with Cr on the M-site in the well-known Mn2GaC. The ferromagnetic response is observed in (Mn1-xCrx)(2)GaC with 0.06 < x < 0.29 up to temperatures well exceeding room temperature (489 K). The strongest magnetization is achieved with x = 0.12, reaching a saturation moment of 1.25 mu B and a remanence of 0.67 mu(B) per M-atom at 3 K and maintaining 0.90 and 0.44 mu(B) per M-atom, respectively, at 300 K. This is the first experimental report of a significant ferromagnetic response in a MAX phase at room temperature. The results open the door to the use of MAX phases in a broad range of applications, from bulk magnets in power electronics to spintronic devices.(c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy