SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Emanuelsson Eva U.) "

Sökning: WFRF:(Emanuelsson Eva U.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Emanuelsson, Eva U. (författare)
  • Formation, ageing and thermal properties of secondary organic aerosol
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In order to properly represent and predict the effects of aerosol in climate systems, an accurate description of their formation and properties is needed. This thesis describes work done to increase the knowledge of processes and properties of atmospherically relevant secondary organic aerosol (SOA) from both biogenic and anthropogenic origin. The common theme for these projects is the use of a Volatility Tandem Differential Mobility Analyser (VTDMA) setup, which in combination with other observations has generated insight into both detailed chemical mechanisms and physical processes that eventually could be suitable for testing in air quality or climate models. During the course of this work, the experimental facility the Gothenburg Flow Reactor for Oxidation Studies at low Temperatures (G-FROST) and the VTDMA setup, as well as a corresponding data evaluation methodology, have been improved and refined. Thermal properties could be linked to both formation and ageing processes of SOA. Using a VTDMA setup, where the thermal characteristics of SOA were measured at a range of evaporation temperatures, a sigmoidal fit to the data enabled parameterisation of their volatility properties. The parameters extracted were e.g. the temperature corresponding to a volume fraction remaining of 0.5 (TVFR0.5) and the slope factor (SVFR), which are measures of the general volatility and the volatility distribution of the condensed phase products, respectively. A higher TVFR0.5 indicates lower volatility, while an increase of SVFR states a broader distribution of vapour pressures. The response of these parameters from changes in experimental conditions could be linked to processes occurring both in the gaseous and the condensed phase. In photo-chemical experiments, the change in TVFR0.5 and SVFR could be described using the OH dose. The gas phase processes were found to be very important for SOA ageing, driven mainly by OH radical exposure in the outdoor chamber SAPHIR. However, processes in the condensed phase, such as plausible non oxidative ageing processes and non-liquid behaviour of SOA particles, were also observed. Detailed studies of ozonolysis of the boreal forest monoterpenes β-pinene and limonene were enabled by precise control of reaction conditions using the G-FROST. The experimental findings in response to e.g. water and radical conditions emphasized the difference in ozonolysis reaction paths between endo- and exocyclic compounds. The results support the recently suggested decomposition of the stabilized Criegee Intermediate via the hydroperoxide channel in ozonolysis of β-pinene.
  •  
2.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:8, s. 20311-20350
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. Several experiments with exclusively anthro- 5 pogenic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μgm−3. The yields (0.5–9 %) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The 10 reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Further 15 more, the OH measurements in combination with the derived yields for anthropogenic SOA enabled application of a simplified model to calculate the chemical turnover of the anthropogenic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (8 %) up to significant fraction (>50 %) providing a suitable range to study the effect of aerosol 20 composition on the aerosol volatility (volume fraction remaining at 343 K: 0.86–0.94). The anthropogenic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of anthropogenic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. A strong positive correlation was found between 25 changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. This change in volatility under dark conditions is likely due to chemical or morphological changes not affecting O/C.
  •  
3.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2013
  • Ingår i: Atmos. Chem. Phys.. - : Copernicus Publications. - 1680-7324. ; 13:5, s. 2837-2855
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m−3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86–0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. The SOA yields, O/C, and f44 (the mass fraction of CO2+ ions in the mass spectra which can be considered as a measure of carboxylic groups) in the mixed photo-chemical experiments could be described as linear combinations of the corresponding properties of the pure systems. For VFR there was in addition an enhancement effect, making the mixed aerosol significantly less volatile than what could be predicted from the pure systems. A strong positive correlation was found between changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. Thus, this change in volatility under dark conditions as well as the anthropogenic enhancement is due to chemical or morphological changes not affecting O/C.
  •  
4.
  • Emanuelsson, Eva U., et al. (författare)
  • Influence of Humidity, Temperature, and Radicals on the Formation and Thermal Properties of Secondary Organic Aerosol (SOA) from Ozonolysis of β-Pinene
  • 2013
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 117:40, s. 10346-10358
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of water and radicals on SOAs produced by β-pinene ozonolysis was investigated at 298 and 288 K using a laminar flow reactor. A volatility tandem differential mobility analyzer (VTDMA) was used to measure the evaporation of the SOA, enabling the parametrization of its volatility properties. The parameters extracted included the temperature at which 50% of the aerosol had evaporated (TVFR0.5) and the slope factor (SVFR). An increase in SVFR indicates a broader distribution of vapor pressures for the aerosol constituents. Reducing the reaction temperature increased SVFR and decreased TVFR0.5 under humid conditions but had less effect on TVFR0.5 under dry conditions. In general, higher water concentrations gave lower TVFR0.5 values, more negative SVFR values, and a reduction in total SOA production. The radical conditions were changed by introducing OH scavengers to generate systems with and without OH radicals and with different [HO2]/[RO2] ratios. The presence of a scavenger and lower [HO2]/[RO2] ratio reduced SOA production. Observed changes in SVFR values could be linked to the more complex chemistry that occurs in the absence of a scavenger and indicated that additional HO2 chemistry gives products with a wider range of vapor pressures. Updates to existing ozonolysis mechanisms with routes that describe the observed responses to water and radical conditions for monoterpenes with endocyclic and exocyclic double bonds are discussed.
  •  
5.
  • Emanuelsson, Eva U., et al. (författare)
  • Parameterization of Thermal Properties of Aging Secondary Organic Aerosol Produced by Photo-Oxidation of Selected Terpene Mixtures
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:11, s. 6168-6176
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine T-VFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. T-VFR0.5 increased by 0.3 +/- 0.1% (ca. 1 K), while the steepness increased by 0.9 +/- 0.3% per hour of 1 x 10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.
  •  
6.
  • Krieger, Ulrich K., et al. (författare)
  • A reference data set for validating vapor pressure measurement techniques : homologous series of polyethylene glycols
  • 2018
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 11:1, s. 49-63
  • Tidskriftsartikel (refereegranskat)abstract
    • To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H-(O-CH2-CH2)(n)-OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10(-7) to 5 x 10(-2) Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass accommodation coefficient and some not) suggests that the mass accommodation coefficients of the studied compounds are close to unity. The quantum chemistry calculations were about 1 order of magnitude higher than the measurements. We find that extrapolation of vapor pressures from elevated to atmospheric temperatures is permissible over a range of about 100 K for these compounds, suggesting that measurements should be performed best at temperatures yielding the highest-accuracy data, allowing subsequent extrapolation to atmospheric temperatures.
  •  
7.
  • Pathak, Ravi K., et al. (författare)
  • Influence of Ozone and Radical Chemistry on Limonene Organic Aerosol Production and Thermal Characteristics
  • 2012
  • Ingår i: Environmental Science & Technology. - : American Chemical Society. - 0013-936X .- 1520-5851. ; 46:21, s. 11660-11669
  • Tidskriftsartikel (refereegranskat)abstract
    • Limonene has a strong tendency to form secondary organic aerosol (SOA) in the atmosphere and in indoor environments. Initial oxidation occurs mainly via ozone or OH radical chemistry. We studied the effect of O3 concentrations with or without a OH radical scavenger (2-butanol) on the SOA mass and thermal characteristics using the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures and a volatility tandem differential mobility analyzer. The SOA mass using 15 ppb limonene was strongly dependent on O3 concentrations and the presence of a scavenger. The SOA volatility in the presence of a scavenger decreased with increasing levels of O3, whereas without a scavenger, there was no significant change. A chemical kinetic model was developed to simulate the observations using vapor pressure estimates for compounds that potentially contributed to SOA. The model showed that the product distribution was affected by changes in both OH and ozone concentrations, which partly explained the observed changes in volatility, but was strongly dependent on accurate vapor pressure estimation methods. The model–experiment comparison indicated a need to consider organic peroxides as important SOA constituents. The experimental findings could be explained by secondary condensed-phase ozone chemistry, which competes with OH radicals for the oxidation of primary unsaturated products.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy