SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Emil Thiman) "

Sökning: WFRF:(Emil Thiman)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alam, Mahbub Ul, et al. (författare)
  • Terminology Expansion with Prototype Embeddings : Extracting Symptoms of Urinary Tract Infection from Clinical Text
  • 2021
  • Ingår i: Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2021) - Volume 5: HEALTHINF. - Setúbal : SciTePress. - 9789897584909 ; , s. 47-57
  • Konferensbidrag (refereegranskat)abstract
    • Many natural language processing applications rely on the availability of domain-specific terminologies containing synonyms. To that end, semi-automatic methods for extracting additional synonyms of a given concept from corpora are useful, especially in low-resource domains and noisy genres such as clinical text, where nonstandard language use and misspellings are prevalent. In this study, prototype embeddings based on seed words were used to create representations for (i) specific urinary tract infection (UTI) symptoms and (ii) UTI symptoms in general. Four word embedding methods and two phrase detection methods were evaluated using clinical data from Karolinska University Hospital. It is shown that prototype embeddings can effectively capture semantic information related to UTI symptoms. Using prototype embeddings for specific UTI symptoms led to the extraction of more symptom terms compared to using prototype embeddings for UTI symptoms in general. Overall, 142 additional UTI symp tom terms were identified, yielding a more than 100% increment compared to the initial seed set. The mean average precision across all UTI symptoms was 0.51, and as high as 0.86 for one specific UTI symptom. This study provides an effective and cost-effective solution to terminology expansion with small amounts of labeled data.
  •  
2.
  • Naucler, Pontus, et al. (författare)
  • HAI-Proactive : Development of an Automated Surveillance System for Healthcare-Associated Infections in Sweden
  • 2020
  • Ingår i: Infection control and hospital epidemiology. - : Cambridge University Press. - 0899-823X .- 1559-6834. ; 41, s. S39-S39
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Healthcare-associated infection (HAI) surveillance is essential for most infection prevention programs and continuous epidemiological data can be used to inform healthcare personal, allocate resources, and evaluate interventions to prevent HAIs. Many HAI surveillance systems today are based on time-consuming and resource-intensive manual reviews of patient records. The objective of HAI-proactive, a Swedish triple-helix innovation project, is to develop and implement a fully automated HAI surveillance system based on electronic health record data. Furthermore, the project aims to develop machine-learning–based screening algorithms for early prediction of HAI at the individual patient level. Methods: The project is performed with support from Sweden’s Innovation Agency in collaboration among academic, health, and industry partners. Development of rule-based and machine-learning algorithms is performed within a research database, which consists of all electronic health record data from patients admitted to the Karolinska University Hospital. Natural language processing is used for processing free-text medical notes. To validate algorithm performance, manual annotation was performed based on international HAI definitions from the European Center for Disease Prevention and Control, Centers for Disease Control and Prevention, and Sepsis-3 criteria. Currently, the project is building a platform for real-time data access to implement the algorithms within Region Stockholm. Results: The project has developed a rule-based surveillance algorithm for sepsis that continuously monitors patients admitted to the hospital, with a sensitivity of 0.89 (95% CI, 0.85–0.93), a specificity of 0.99 (0.98–0.99), a positive predictive value of 0.88 (0.83–0.93), and a negative predictive value of 0.99 (0.98–0.99). The healthcare-associated urinary tract infection surveillance algorithm, which is based on free-text analysis and negations to define symptoms, had a sensitivity of 0.73 (0.66–0.80) and a positive predictive value of 0.68 (0.61–0.75). The sensitivity and positive predictive value of an algorithm based on significant bacterial growth in urine culture only was 0.99 (0.97–1.00) and 0.39 (0.34–0.44), respectively. The surveillance system detected differences in incidences between hospital wards and over time. Development of surveillance algorithms for pneumonia, catheter-related infections and Clostridioides difficile infections, as well as machine-learning–based models for early prediction, is ongoing. We intend to present results from all algorithms. Conclusions: With access to electronic health record data, we have shown that it is feasible to develop a fully automated HAI surveillance system based on algorithms using both structured data and free text for the main healthcare-associated infections.Funding: Sweden’s Innovation Agency and Stockholm County CouncilDisclosures: None
  •  
3.
  • van der Werff, S. D., et al. (författare)
  • The accuracy of fully automated algorithms for surveillance of healthcare-associated urinary tract infections in hospitalized patients
  • 2021
  • Ingår i: Journal of Hospital Infection. - : Elsevier BV. - 0195-6701 .- 1532-2939. ; 110, s. 139-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Surveillance for healthcare-associated infections such as healthcareassociated urinary tract infections (HA-UTI) is important for directing resources and evaluating interventions. However, traditional surveillance methods are resourceintensive and subject to bias.Aim: To develop and validate a fully automated surveillance algorithm for HA-UTI using electronic health record (EHR) data.Methods: Five algorithms were developed using EHR data from 2979 admissions at Karolinska University Hospital from 2010 to 2011: (1) positive urine culture (UCx); (2) positive UCx + UTI codes (International Statistical Classification of Diseases and Related Health Problems, 10th revision); (3) positive UCx + UTI-specific antibiotics; (4) positive UCx + fever and/or UTI symptoms; (5) algorithm 4 with negation for fever without UTI symptoms. Natural language processing (NLP) was used for processing free-text medical notes. The algorithms were validated in 1258 potential UTI episodes from January to March 2012 and results extrapolated to all UTI episodes within this period (N 1/4 16,712). The reference standard for HA-UTIs was manual record review according to the European Centre for Disease Prevention and Control (and US Centers for Disease Control and Prevention) definitions by trained healthcare personnel.Findings: Of the 1258 UTI episodes, 163 fulfilled the ECDC HA-UTI definition and the algorithms classified 391, 150, 189, 194, and 153 UTI episodes, respectively, as HA-UTI. Algorithms 1, 2, and 3 had insufficient performances. Algorithm 4 achieved better performance and algorithm 5 performed best for surveillance purposes with sensitivity 0.667 (95% confidence interval: 0.594-0.733), specificity 0.997 (0.996-0.998), positive predictive value 0.719 (0.624-0.807) and negative predictive value 0.997 (0.996-0.997).Conclusion: A fully automated surveillance algorithm based on NLP to find UTI symptoms in free-text had acceptable performance to detect HA-UTI compared to manual record review. Algorithms based on administrative and microbiology data only were not sufficient.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy