SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enestam Sonja) "

Sökning: WFRF:(Enestam Sonja)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broström, Markus, et al. (författare)
  • Condensation in the KCl–NaCl system
  • 2013
  • Ingår i: Fuel processing technology. - Amsterdam : Elsevier. - 0378-3820 .- 1873-7188. ; 105, s. 142-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Condensation of gaseous KCl and NaCl is known to participate in deposit formation and high temperature corrosion processes in heat and power plants. Little is known about interaction between the two salts, which is of interest for the overall understanding of deposit and corrosion problems. Within this study, condensation at different material surface temperatures and salt mixtures was investigated.Salt vapors were prepared by temperature controlled evaporation. A cooled condensation probe with a temperature gradient was inserted in the hot gas. After exposure, the probe surface was visually inspected and analyzed with SEM/EDS and XRD for elemental and phase composition. TGA/DTA was used to provide complementary information on vaporization and sintering.The results indicated that a mixture of KCl and NaCl probably condenses as separate phases at concentrations and temperatures below the melting points of the salts. Condensation was possibly followed by a secondary sintering process. It was verified by TGA/DTA that a mixture of solid KCl and NaCl particles sinters and melts rapidly at temperatures above the melting temperature of a corresponding solution. It was also seen that sintering took place at lower temperatures with slow solid-gas interactions, possibly with the formation of solid solutions.
  •  
2.
  • Enestam, Sonja, et al. (författare)
  • Occurrence of zinc and lead in aerosols and deposits in the fluidized bed combustion of recovered waste wood : Part 1: Samples from boilers
  • 2011
  • Ingår i: Energy & Fuels. - : American Chemical Society. - 0887-0624 .- 1520-5029. ; 25:4, s. 1396-1404
  • Tidskriftsartikel (refereegranskat)abstract
    • Combustion of recovered waste wood (RWW) has led to increased fouling and corrosion of furnace walls, superheaters, and economizers. These problems have been associated mainly with chlorine, zinc, and lead in the deposits but also with sodium and titanium. The presence of lead and zinc compounds, especially lead and zinc chlorides, has been shown to increase the corrosivity of the deposits even at relatively low metal temperatures (230−450 °C). The present work determined experimentally the distribution and speciation of zinc and lead compounds in aerosol particles and deposits in the fluidized-bed combustion of RWW. Measurements were conducted in both a full-scale (20 MWth) plant with as-received RWW and in a pilot-scale (2 MWth) setup with as-received RWW and RWW doped with zinc and lead. The results show that the amount and speciation of zinc and lead in the deposits vary depending upon the fuel composition, flue gas temperature, and metal temperature. Both lead and zinc chlorides are found in temperature ranges typical for the primary superheater area. A caracolite-type compound [Na3Pb2(SO4)3Cl] was identified in deposits from the economizer area and K2ZnCl4 in the sub-micrometer aerosol particle fraction.
  •  
3.
  • Enestam, Sonja, et al. (författare)
  • Occurrence of Zinc and Lead in Aerosols and Deposits in the Fluidized-Bed Combustion of Recovered Waste Wood. Part 2: Thermodynamic Considerations
  • 2011
  • Ingår i: Energy & Fuels. - : ACS publications. - 0887-0624 .- 1520-5029. ; 25:4, s. 1970-1977
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work, which is the second part in a series of two, multi-phase, multi-component equilibrium calculations were used to study the chemistry and deposition behavior of lead and zinc in the combustion of recovered waste wood (RWW). Particular attention was paid to the deposition behavior in different parts of the boiler under varying flue gas and material temperature conditions. In addition, the influence of fuel composition was considered by studying three different fuel compositions. The results from the calculations were compared to experimental results from two measurement campaigns, whose goal was to experimentally determine the distribution and speciation of zinc and lead compounds in aerosol particles and deposits in the fluidized-bed combustion of RWW. The results from the experimental work are presented in part 1 (10.1021/ef101478n) of this work.
  •  
4.
  • Folkeson, Nicklas, 1981, et al. (författare)
  • Fireside corrosion of stainless and low alloyed steels in a waste-fired CFB boiler; The effect of adding sulphur to the fuel
  • 2008
  • Ingår i: Materials Science Forum. ; 595-598, s. 289-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Corrosion field tests have been carried out in the superheater region of a commercial waste-fired 75MW CFBC boiler using air cooled probes. Exposure time was 24 and 1000 hours. The effect of adding sulphur to the fuel on the corrosion of two high alloyed steels and a low alloyed steel was studied. The fuel consisted of 50% household waste and 50% industrial waste. The exposed samples were analyzed by ESEM/EDX and XRD. Metal loss was determined after 1000 hours. Both materials suffered significant corrosion in the absence of sulphur addition and the addition of sulphur to the fuel reduced corrosion significantly. The rapid corrosion of the high alloyed steel in the absence of sulphur addition is caused by the destruction of the chromium-containing protective oxide by formation of calcium chromate. Adding sulphur to the fuel inhibited chromate formation and increased the sulphate/chloride ratio in the deposit. Iron(II) chloride formed on the low alloyed steel regardless of whether sulphur was added or not.
  •  
5.
  •  
6.
  • Rebbling, Anders, 1980- (författare)
  • Application of fuel design to mitigate ash-related problems during combustion of biomass
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The energy supply of today is, through the use of fossil energy carriers,contributing to increased net emissions of greenhouse gases. This hasseveral negative effects on our environment and our climate. In order toreduce the impact of this, and possibly to reverse some of the effects, allrenewable energy sources must be used. Biomass is the renewable energycarrier that has the greatest potential to reduce net greenhouse gasemissions, but the transition from fossil fuels to biofuels is challenging.The combustion of biomass is associated with various technical andenvironmental problems such as slagging, corrosion, and emissions ofparticles, soot, or harmful chemical compounds. Most of these problemsare linked to ash chemical reactions involving alkali metals. Therefore, toreduce the risk of operational and environmental problems, it is importantto understand and control the ash transformation reactions involvingalkali metals.The research presented in this thesis has focused on the development oftools, such as models and indices, for predicting the behaviour of variousbiofuels during combustion, and on the development of the concept of fueldesign and implementation of the same during industrial combustion ofbiomass. The development of easy-to-use tools for predicting problematicash behaviour is crucial in order to make it possible to increase the use ofbiomass as an alternative to fossil fuels. The tools presented here are basedon theoretical and empirical knowledge and can be used to predictchallenges concerning the fuel ash composition and to propose relevantfuel design measures.The purpose of fuel design, as used here, is to broaden the fuel feedstockand to increase the usability of biomass in the global energy system. Thisis achieved through measures to change the ash chemical composition inorder to enhance beneficial properties, or reduce problematic properties,via the use of additives or blending of two or more different fuels.The present thesis extends the foundation of knowledge regarding fuel ashtransformation reactions and their implications for operational problemsthrough in-depth laboratory studies and analyses. Furthermore, thefeasibility of applying this extended knowledge in the medium and largescaleindustrial combustion of biomass is demonstrated and validated. More specifically, a slagging index has been developed using the results ofseveral years of combustion experiments. Fuel designs based on the indexwas demonstrated during normal operation in local and district heatingplants. Furthermore, a model was developed for predicting slaggingproblems that take into account both the chemical composition of the fueland the burner technology.Several studies have also been performed on different fuel designs basedon the same foundation as the index and the model. Additives to supply forexample calcium and sulphur, as well as the clay kaolin, have been used toreduce both technical and environmental problems.The conclusion is that fuel design, based on ash chemistry, is a possiblepath for increased fuel flexibility and a broader feedstock for bioenergy.
  •  
7.
  • Talus, Annika, et al. (författare)
  • Corrosion of carbon steel underneath a lead/potassium chloride salt mixture
  • 2019
  • Ingår i: Materials and corrosion - Werkstoffe und Korrosion. - : Wiley-VCH Verlag. - 0947-5117 .- 1521-4176. ; 70:8, s. 1450-1460
  • Tidskriftsartikel (refereegranskat)abstract
    • High amounts of lead in waste/recycled wood fuel are known to be a contributing factor to the increased corrosion often related to this type of fuel. In combination with potassium, usually present in the fuel, low-melting point salt mixtures between lead chloride (PbCl 2) and potassium chloride (KCl) are expected to form. The purpose of this study is to investigate reactions in the mixed salt of PbCl 2 and KCl and its interactions with carbon steel P265GH and its oxide. Laboratory exposures were performed in an isothermal tube furnace with a salt mixture of PbCl 2/KCl (50/50 mol%) put on steel samples. The test duration was 24 hr at either 300°C or 340°C in an atmosphere of 100 ppm HCl and 20 vol% H 2O in synthetic air. After exposure, the salt mixture consists of distinct areas of KCl and PbCl 2 but also the compounds K 2PbCl 4 and KPb 2Cl 5. A general observation is that the oxide thickness increases with temperature and that areas with Pb/K-mixed salt are frequently found in close connection to more corroded areas. Often the more lead-rich phase KPb 2Cl 5 is located closest to the corrosion product indicating its importance for the corrosion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy