SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engblom David Professor 1975 ) "

Sökning: WFRF:(Engblom David Professor 1975 )

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mirrasekhian, Elahe, 1978- (författare)
  • Immune-to-Brain Signaling in Fever : The Brain Endothelium as Interface
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Fever is a brain-regulated elevation of body temperature that occurs in response to infectious and non-infectious stimuli. During inflammatory episodes, circulating cytokines that are released by activated immune cells, trigger the induction of cyclooxygenase (COX)-2 in the ventromedial preoptic area of the hypothalamus (the thermoregulation center). COX-2-dependent-prostaglandin (PG)E2 synthesis is essential for the generation of fever and upon an immune challenge, it is induced in several cells within the brain including the brain endothelial cells and perivascular macrophages. However, due to lack of experimental models with cell type-specific modulation of PGE2 synthesizing enzymes, the cellular source of pyrogenic PGE2 and its induction mechanism(s) remained obscure. Using such technology, we showed that the brain endothelium is the cellular source of pyrogenic PGE2 and that activation of brain endothelial IL-6 receptors by circulating IL-6 is critical for the PGE2 induction.Inhibition of PGE2 synthesis is assumed to be the mode of action of many antipyretic drugs, possibly including paracetamol. Given that paracetamol at a high dose has been shown to induce hypothermia by activation of the transient receptor potential ankyrin 1 (TRPA1) ion channel, we examined whether the antipyretic effect of paracetamol is also TRPA1 dependent. Our findings revealed that the antipyretic effect of paracetamol is independent of TRPA1 and associated with inhibition of the PGE2 synthesis in the brain.This thesis provides new insight into the molecular mechanism behind the febrile response in which the peripheral circulating IL-6 communicates with the brain by induction of pyrogenic PGE2 in the brain endothelium. It also demonstrates that the antipyretic effect of paracetamol is exerted by inhibition of the PGE2 synthesis in the brain.
  •  
2.
  • Osman, Ayman (författare)
  • Autophagy in Peripheral Neuropathy
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peripheral neuropathy includes a wide range of diseases affecting millions around the world, and many of these diseases have unknown etiology. Peripheral neuropathy in diabetes represents a large proportion of peripheral neuropathies. Nerve damage can also be caused by trauma. Peripheral neuropathies are a significant clinical problem and efficient treatments are largely lacking. In the case of a transected nerve, different methods have been used to repair or reconstruct the nerve, including the use of nerve conduits, but functional recovery is usually poor.Autophagy, a cellular mechanism that recycles damaged proteins, is impaired in the brain in many neurodegenerative diseases affecting animals and humans. No research, however, has investigated the presence of autophagy in the human peripheral nervous system. In this study, I present the first structural evidence of autophagy in human peripheral nerves. I also show that the density of autophagy structures is higher in peripheral nerves of patients with chronic idiopathic axonal polyneuropathy (CIAP) and inflammatory neuropathy than in controls. The density of these structures increases with the severity of the neuropathy.In animal model, using Goto-Kakizaki (GK) rats with diabetes resembling human type 2 diabetes, activation of autophagy by local administration of rapamycin incorporated in collagen conduits that were used for reconnection of the transected sciatic nerve led to an increase in autophagy proteins LC3 and a decrease in p62 suggesting that the autophagic flux was activated. In addition, immunoreactivity of neurofilaments, which are parts of the cytoskeleton of axons, was increased indicating increased axonal regeneration. I also show that many proteins involved in axonal regeneration and cell survival were up-regulated by rapamycin in the injured sciatic nerve of GK rats four weeks after injury.Taken together, these findings provide new knowledge about the involvement of autophagy in neuropathy and after peripheral nerve injury and reconstruction using collagen conduits.
  •  
3.
  • Klawonn, Anna, 1985- (författare)
  • Molecular Mechanisms of Reward and Aversion
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Various molecular pathways in the brain shape our understanding of good and bad, as well as our motivation to seek and avoid such stimuli. This work evolves around how systemic inflammation causes aversion; and why general unpleasant states such as sickness, stress, pain and nausea are encoded by our brain as undesirable; and contrary to these questions, how drugs of abuse can subjugate the motivational neurocircuitry of the brain. A common feature of these various disease states is involvement of the motivational neurocircuitry - from mesolimbic to striatonigral pathways. Having an intact motivational system is what helps us evade negative outcomes and approach natural positive reinforcers, which is essential for our survival. During disease-states the motivational neurocircuitry may be overthrown by the molecular mechanisms that originally were meant to aid us.In study I, to investigate how inflammation is perceived as aversive, we used a behavioral test based on Pavlovian place conditioning with the aversive inflammatory stimulus E. coli lipopolysaccharide (LPS). Using a combination of cell-type specific gene deletions, pharmacology, and chemogenetics, we uncovered that systemic inflammation triggered aversion by MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E2 (PGE2) synthesis. Moreover, we showed that inflammation-induced PGE2 targeted EP1 receptors on striatal dopamine D1 receptor–expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, inflammation-induced aversion was not an indirect consequence of fever or anorexia but constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE2-mediated modulation of the dopaminergic circuitry is a key mechanism underlying inflammation-induced aversion.In study II, we investigate the role of peripheral IFN-γ in LPS induced conditioned place aversion by employing a strategy based on global and cell-type specific gene deletions, combined with measures of gene-expression. LPS induced IFN-ɣ expression in the blood, and deletion of IFN-ɣ or its receptor prevented conditioned place aversion (CPA) to LPS. LPS increased the expression of chemokine Cxcl10 in the striatum of normal mice. This induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion. Collectively, these findings demonstrate that circulating IFN-ɣ binding to receptors on brain endothelial cells which induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.In study III, we explored the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice in CPA to various stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain and kappa opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference towards most of the aversive stimuli, but were indifferent to pain. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine-dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were re-expressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in a MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.The neurotransmitter acetylcholine has been implied in reward learning and drug addiction. However, the role of cholinergic receptor subtypes in such processes remains elusive. In study IV we investigated the function of muscarinic M4Rs on dopamine D1R expressing neurons and acetylcholinergic neurons, using transgenic mice in various reward-enforced behaviors and in a “waiting”-impulsivity test. Mice lacking M4-receptors from D1-receptor expressing neurons exhibited an escalated reward seeking phenotype towards cocaine and natural reward, in Pavlovian conditioning and an operant self-administration task, respectively. In addition, the M4-D1RCre mice showed impaired waiting impulsivity in the 5-choice-serial-reaction-time-task. On the contrary, mice without M4Rs in acetylcholinergic neurons were unable to learn positive reinforcement to natural reward and cocaine, in an operant runway paradigm and in Pavlovian conditioning.  Immediate early gene expression mirrored the behavioral findings arising from M4R-D1R knockout, as cocaine induced cFos and FosB was significantly increased in the forebrain of M4-D1RCre mice, whereas it remained normal in the M4R-ChatCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality.
  •  
4.
  • Ottosson, Nina (författare)
  • Molecular Mechanisms of Resin Acids and Their Derivatives on the Opening of a Potassium Channel
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Voltage-gated ion channels play fundamental roles in excitable cells, such as neurons, where they enable electric signaling. Normally, this signaling is well controlled, but brain damage, alterations in the ionic composition of the extracellular solution, or dysfunctional ion channels can increase the electrical excitability thereby causing epilepsy. Voltage-gated ion channels are obvious targets for antiepileptic drugs, and, as a rule of thumb, excitability is dampened either by closing voltagegated sodium channels (Nav channels) or by opening voltage-gated potassium channels (Kv channels). For example, several classical antiepileptic drugs block the ion-conducting pore of Nav channels. Despite the large number of existing antiepileptic drugs, one third of the patients with epilepsy suffer from intractable or pharmacoresistant seizures.Our research group has earlier described how different polyunsaturated fatty acids (PUFAs) open a Kv channel by binding close to the voltage sensor and, from this position, electrostatically facilitate the movement of the voltage-sensor, thereby opening the channel. However, PUFAs affect a wide range of ion channels, making it difficult to use them as pharmaceutical drugs; it would be desirable to find smallmolecule compounds with an electrostatic, PUFA-like mechanism of action. The aim of the research leading to this thesis was to find, characterize, and refine drug candidates capable of electrostatically opening a Kv channel.The majority of the experiments were performed on the cloned Shaker Kv channel, expressed in oocytes from the frog Xenopus laevis, and the channel activity was explored with the two-electrode voltage-clamp technique. By systematically mutating the extracellular end of the channel’s voltage sensor, we constructed a highly PUFAsensitive channel, called the 3R channel. Such a channel is a useful tool in the search for electrostatic Kv-channel openers. We found that resin acids, naturally occurring in tree resins, act as electrostatic Shaker Kv channel openers. To explore the structure-activity relationship in detail, we synthesized 120 derivatives, whereof several were potent Shaker Kv channel openers. We mapped a common resin acidbinding site to a pocket formed by the voltage sensor, the channel’s third transmembrane segment, and the lipid membrane, a principally new binding site for small-molecule compounds. Further experiments showed that there are specific interactions between the compounds and the channel, suggesting promises for further drug development. Several of the most potent Shaker Kv channel openers also dampened the excitability in dorsal-root-ganglion neurons from mice, elucidating the pharmacological potency of these compounds. In conclusion, we have found that resin-acid derivatives are robust Kv-channel openers and potential drug candidates against diseases caused by hyperexcitability, such as epilepsy.
  •  
5.
  • Renhorn, Jakob, 1981- (författare)
  • Conformational Changes during Potassium-Channel Gating
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Voltage-gated ion channels have a paramount importance in many physiological processes such as cell-to-cell communication, action potential-propagation, and cell motility. Voltage-gated ion channels are characterized by their ability to sense membrane voltage and to greatly change channel activity in response to small changes in the voltage. The ability to sense voltage resides in the four voltage-sensor domains (VSDs) surrounding the central ion-conducting pore. Membrane depolarization causes the inside of the membrane to become positively charged, electrostatically repelling the positively charged fourth transmembrane segment (S4), or voltage sensor, in the VSD, causing the voltage sensor to move outwards. This motion provides necessary energy to open the pore and allow ion conductivity. Prolonged channel activation leads to alterations in the selectivity filter which cease ion conductivity, in a process called slow inactivation. In this thesis, we investigated the movement of S4 during activation of the channel. We also studied the communication between the four subunits during activation as well as the communication between the pore domain and VSD during slow inactivation.We have shown that voltage sensors move approximately 12 Å outwards during activation. The positively charged amino acid residues in S4 create temporary salt bridges with negative counter-charges in the other segments of the VSD as it moves through a membrane. We have also shown that the movement of one of the four voltage sensors can affect the movement of the neighboring voltage sensors. When at least one voltage sensor has moved to an up-position, it stabilizes other voltage sensors in the up-position, increasing the energy required for the voltage sensor to return to the down position.We have also shown reciprocal communication between the pore domain and the VSDs. Alterations in the VSD or the interface between the pore and the VSD cause changes in the rate of slow inactivation. Likewise, modifications in the pore domain cause changes to the voltage-sensor movement. This indicates communication between the pore and the VSD during slow inactivation.The information from our work could be used to find new approaches when designing channel-modifying drugs for the treatment of diseases caused by increased neuronal excitability, such as chronic pain and epilepsy.
  •  
6.
  • Eskilsson, Anna, 1986- (författare)
  • Inflammatory Signaling Across the Blood-Brain Barrier and the Generation of Fever
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Fever is a cardinal sign of inflammation and is evolutionary conserved. Fever is known to be beneficial during acute inflammation, but over time and if very high it can be detrimental. The signaling pathways by which fever is initiated by the brain and the peripheral mechanisms through which the temperature increase is generated were studied from several point of views. Fever is known to be dependent on prostaglandin E2 (PGE2) binding to its receptors in the median preoptic nucleus of the hypothalamus, which signals to the brainstem and through sympathetic nerves to heat conserving and heat producing effector organs. This thesis focuses on identifying the cells that produce the PGE2 critical for the fever response; showing where in the brain the critical PGE2 production takes place; demonstrating how peripheral inflammation activates these cells to produce PGE2; and finally, identifying the effector mechanisms behind the temperature elevation in fever. By using a newly developed specific antibody we showed that the enzyme responsible for the terminal step in the production of PGE2, microsomal prostaglandin E-synthase 1 (mPGES-1), is expressed in endothelial cells of brain blood vessels in mice where it is co-expressed with the enzyme cyclooxygenase-2 (Cox-2), which is known to be induced in these cells and to be rate limiting for the PGE2 production. The mPGES-1 enzyme was also expressed in several other cell types and structures which however did not express Cox-2, such as capillary-associated pericytes, astroglial cells, leptomeninges, and the choroid plexus. The role of the mPGES-1 in these other cells/structures remains unknown. Next, by using mice with selective deletion of Cox-2 in brain endothelial cells, we showed that local PGE2 production in deep brain areas, such as the hypothalamus, is critical for the febrile response to peripheral inflammation. In contrast, PGE2 production in other brain areas and the overall PGE2 level in the brain were not critical for the febrile response. Partly restoring the PGE2 synthesizing capacity in the anterior hypothalamus of mice lacking such capacity with a lentiviral vector resulted in a temperature elevation in response to an intraperitoneal injection of bacterial wall lipopolysaccharide (LPS). The data show that the febrile response is dependent on the local release of PGE2 onto its target neurons, possibly by a paracrine mechanism. Deletion of the receptor for the pyrogenic cytokine IL-6 on brain endothelial cells, but not on neurons or peripheral nerves, strongly attenuated the febrile response to LPS and reduced the induction of the Cox-2 expression in the hypothalamus. Furthermore, mice deficient of the IL- 6Rα gene in the brain endothelial cells showed a reduced SOCS3 mRNA induction, whereas IκB mRNA-levels were unaffected, suggesting that the IL-6 signaling occurs via STAT3 activation and not signaling through the transcription factor NF-κB. This idea was confirmed by the observation of attenuated fever in mice deficient of STAT3 in brain endothelial cells. These data show that IL-6, when endogenously released during systemic inflammation, is pyrogenic by binding to IL-6R on brain endothelial cells to induce prostaglandin synthesis in these cells. Finally, we demonstrate that mice with genetic deletion of uncoupling protein-1 (UCP-1), hence lacking functional brown adipose tissue, had a normal fever response to LPS, and that LPS caused no activation of brown adipose tissue in wild type mice. However, blocking peripheral cutaneous vasoconstriction resulted in a blunted fever response to LPS, suggesting that heat conservation, possibly together with shivering or non-shivering thermogenesis in the musculature, is responsible for the generation of immune-induced fever, whereas brown adipose tissue thermogenesis is not involved.  
  •  
7.
  • Engblom, David, 1975- (författare)
  • Prostaglandin E2 in immune-to-brain signaling
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Upon immune-challenge, signaling from the immune system to the brain triggers an array of central nervous responses that include fever, anorexia, hyperalgesia and activation of the hypothalamus-pituitary adrenal axis. These symptoms are dependent on cytokines produced at the site of inflammation. However, because cytokines cannot penetrate the blood-brain barrier, the mechanism by which cytokines activate the central nervous system has remained elusive. Among several hypotheses, it has been suggested that prostaglandin E2 (PGE2) synthesized at the blood-brain interface and subsequently binding to PGE2 receptors expressed on deep neural structures may be responsible for the immune-to-brain signaling.During inflammatory conditions PGE2 is produced from prostaglandin H2 by the inducible isomerase microsomal prostaglandin E synthase-1 (mPGES-1). By using in situ hybridization, we investigated the expression of this enzyme in the brain of rats subjected to immune challenge induced by intravenous injection of interleukin-1ß. We found that mPGES-1 mRNA had a very restricted and low expression in the brain of naive rats. However, in response to inunune challenge it was rapidly and heavily induced in cells of the cerebral vasculature. Further, we found that the cells expressing mPGES-1 co-expressed cyclooxygenase-2 mRNA and interleukin-1 receptor type 1 mRNA. Thus, circulating interleukin-1 may bind to brain vascular cells and induce the expression of cyclooxygenase-2 and mPGES-1, leading to the production of PGE2 that can diffuse into the brain and trigger central nervous responses. We also showed that the same mechanism may be operating in a model for autoimmune disease. Thus, rats with adjuvant-induced arthritis, a model of rheumatoid arthritis, displayed a similar mPGES-1 and cyclooxygenase-2 induction in interleukin-1 receptor bearing brain endothelial cells.To examine the functional role of the central induction of mPGES-1, we studied the febrile response in mice deficient in the gene encoding mPGES-1. These mice showed no fever and no central PGE2 production in response to immune challenge induced by intraperitoneal injection of the bacterial fragment lipopolysaccharide, demonstrating that PGE2 synthesized by mPGES-1 is critical for immune-induced fever.We also studied the expression of receptors for PGE2 in the parabrachial nucleus, an autonomic brain stem structure involved in the regulation of food intake, blood pressure and nociceptive processing. We found that neurons in the para brachial nucleus express PGE2 receptors of type EP3 and EP4 and that many of the EP3 and some of the EP4 expressing neurons in this nucleus are activated by immune challenge. The PGE2 receptor expressing neurons also expressed mRNAs for various neuropeptides, such as dynorphin, enkephalin, calcitonin gene related peptide and substance P. Taken together with previous observations, these findings indicate that the PGE2 receptor expressing cells in the parabrachial nucleus are involved in alterations in food intake and in nociceptive processing during immune challenge.In summary, these data show the presence of a mechanism, involving cerebrovascular induction of mPGES-1, that conveys an inflammatory message from the blood-stream through the blood-brain barrier to relevant deep neural structures. Further, the findings show that this mechanism is critical for the febrile response and is activated during both acute and prolonged inflammatory conditions. This identifies mPGES-1 as a potential drug target for the alleviation of central nervous symptoms of inflammatory disease, such as fever, pain and anorexia.
  •  
8.
  • Zajdel, Joanna, 1989- (författare)
  • Interactions between the brain and the immune system in pain and inflammation
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Reciprocal interactions between the nervous and immune systems have gained a lot of attention in the last two decades, especially after demonstrating that cytokine immunotherapies can induce depression and after describing the inflammatory reflex. A lot of effort has been dedicated to understanding how the signals from the immune system reach the brain and vice versa, and on their role in health and disease. However, it is not well-known which of the brain circuits, receptors and signalling molecules give rise to behavioural and affective changes induced by inflammation, such as reduced food intake and induction of negative mood. Moreover, although it is well established that early life stress leads to an increased risk of developing inflammatory diseases in adulthood, the acute effects of stress on the inflammatory response in childhood are not well described. Using mouse models of systemic and local inflammation, I studied (1) how inflammatory pain elicits negative affect, (2) if CGRPα is necessary for parabrachial-amygdaloid pathway-mediated behaviours associated with pain and inflammation, and finally, (3) what are the effects of stress on the inflammatory process during early life. The results indicate that (1) the negative affect of inflammatory pain is triggered by inhibition of serotonergic neurons of the dorsal raphe nucleus, as a result of prostaglandin E2 binding to EP3 receptors; (2) CGRPα is dispensable for most pain- and inflammation-related protective behaviours; (3) acute stress potentiates the pro-inflammatory cytokine expression after an inflammatory challenge in mouse pups. The phenomena studied here can contribute to understanding how immune system activation induces changes in mood and behaviour common for inflammation and depression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy