SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enqvist Olof) "

Sökning: WFRF:(Enqvist Olof)

  • Resultat 1-10 av 95
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abuhasanein, Suleiman, et al. (författare)
  • A novel model of artificial intelligence based automated image analysis of CT urography to identify bladder cancer in patients investigated for macroscopic hematuria
  • 2024
  • Ingår i: Scandinavian journal of urology. - : Medical Journal Sweden AB. - 2168-1805 .- 2168-1813. ; 59, s. 90-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To evaluate whether artificial intelligence (AI) based automatic image analysis utilising convolutional neural networks (CNNs) can be used to evaluate computed tomography urography (CTU) for the presence of urinary bladder cancer (UBC) in patients with macroscopic hematuria. Methods: Our study included patients who had undergone evaluation for macroscopic hematuria. A CNN-based AI model was trained and validated on the CTUs included in the study on a dedicated research platform (Recomia.org). Sensitivity and specificity were calculated to assess the performance of the AI model. Cystoscopy findings were used as the reference method. Results: The training cohort comprised a total of 530 patients. Following the optimisation process, we developed the last version of our AI model. Subsequently, we utilised the model in the validation cohort which included an additional 400 patients (including 239 patients with UBC). The AI model had a sensitivity of 0.83 (95% confidence intervals [CI], 0.76-0.89), specificity of 0.76 (95% CI 0.67-0.84), and a negative predictive value (NPV) of 0.97 (95% CI 0.95-0.98). The majority of tumours in the false negative group (n = 24) were solitary (67%) and smaller than 1 cm (50%), with the majority of patients having cTaG1-2 (71%). Conclusions: We developed and tested an AI model for automatic image analysis of CTUs to detect UBC in patients with macroscopic hematuria. This model showed promising results with a high detection rate and excessive NPV. Further developments could lead to a decreased need for invasive investigations and prioritising patients with serious tumours.
  •  
2.
  • Abuhasanein, Suleiman, et al. (författare)
  • A novel model of artificial intelligence based automated image analysis of CT urography to identify bladder cancer in patients investigated for macroscopic hematuria
  • 2024
  • Ingår i: Scandinavian Journal of Urology. - : Medical Journal Sweden AB. - 2168-1805 .- 2168-1813. ; 59, s. 90-97
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To evaluate whether artificial intelligence (AI) based automatic image analysis utilising convolutional neural networks (CNNs) can be used to evaluate computed tomography urography (CTU) for the presence of urinary bladder cancer (UBC) in patients with macroscopic hematuria. METHODS: Our study included patients who had undergone evaluation for macroscopic hematuria. A CNN-based AI model was trained and validated on the CTUs included in the study on a dedicated research platform (Recomia.org). Sensitivity and specificity were calculated to assess the performance of the AI model. Cystoscopy findings were used as the reference method. RESULTS: The training cohort comprised a total of 530 patients. Following the optimisation process, we developed the last version of our AI model. Subsequently, we utilised the model in the validation cohort which included an additional 400 patients (including 239 patients with UBC). The AI model had a sensitivity of 0.83 (95% confidence intervals [CI], 0.76-0.89), specificity of 0.76 (95% CI 0.67-0.84), and a negative predictive value (NPV) of 0.97 (95% CI 0.95-0.98). The majority of tumours in the false negative group (n = 24) were solitary (67%) and smaller than 1 cm (50%), with the majority of patients having cTaG1-2 (71%). CONCLUSIONS: We developed and tested an AI model for automatic image analysis of CTUs to detect UBC in patients with macroscopic hematuria. This model showed promising results with a high detection rate and excessive NPV. Further developments could lead to a decreased need for invasive investigations and prioritising patients with serious tumours.
  •  
3.
  • Alvén, Jennifer, 1989, et al. (författare)
  • Shape-aware label fusion for multi-atlas frameworks
  • 2019
  • Ingår i: Pattern Recognition Letters. - : Elsevier BV. - 0167-8655. ; 124, s. 109-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite of having no explicit shape model, multi-atlas approaches to image segmentation have proved to be a top-performer for several diverse datasets and imaging modalities. In this paper, we show how one can directly incorporate shape regularization into the multi-atlas framework. Unlike traditional multi-atlas methods, our proposed approach does not rely on label fusion on the voxel level. Instead, each registered atlas is viewed as an estimate of the position of a shape model. We evaluate and compare our method on two public benchmarks: (i) the VISCERAL Grand Challenge on multi-organ segmentation of whole-body CT images and (ii) the Hammers brain atlas of MR images for segmenting the hippocampus and the amygdala. For this wide spectrum of both easy and hard segmentation tasks, our experimental quantitative results are on par or better than state-of-the-art. More importantly, we obtain qualitatively better segmentation boundaries, for instance, preserving topology and fine structures.
  •  
4.
  • Alvén, Jennifer, 1989, et al. (författare)
  • Überatlas: Fast and robust registration for multi-atlas segmentation
  • 2016
  • Ingår i: Pattern Recognition Letters. - : Elsevier BV. - 0167-8655. ; 80, s. 249-255
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-atlas segmentation has become a frequently used tool for medical image segmentation due to its outstanding performance. A computational bottleneck is that all atlas images need to be registered to a new target image. In this paper, we propose an intermediate representation of the whole atlas set – an überatlas – that can be used to speed up the registration process. The representation consists of feature points that are similar and detected consistently throughout the atlas set. A novel feature-based registration method is presented which uses the überatlas to simultaneously and robustly find correspondences and affine transformations to all atlas images. The method is evaluated on 20 CT images of the heart and 30 MR images of the brain with corresponding ground truth. Our approach succeeds in producing better and more robust segmentation results compared to three baseline methods, two intensity-based and one feature-based, and significantly reduces the running times.
  •  
5.
  • Alvén, Jennifer, 1989, et al. (författare)
  • Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Segmentation
  • 2015
  • Ingår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - Cham : Springer International Publishing. - 1611-3349 .- 0302-9743. - 9783319196640 ; 9127, s. 92-102
  • Konferensbidrag (refereegranskat)abstract
    • Registration is a key component in multi-atlas approaches to medical image segmentation. Current state of the art uses intensitybased registration methods, but such methods tend to be slow, which sets practical limitations on the size of the atlas set. In this paper, a novel feature-based registration method for affine registration is presented. The algorithm constructs an abstract representation of the entire atlas set, an uberatlas, through clustering of features that are similar and detected consistently through the atlas set. This is done offline. At runtime only the feature clusters are matched to the target image, simultaneously yielding robust correspondences to all atlases in the atlas set from which the affine transformations can be estimated efficiently. The method is evaluated on 20 CT images of the heart and 30 MR images of the brain with corresponding gold standards. Our approach succeeds in producing better and more robust segmentation results compared to two baseline methods, one intensity-based and one feature-based, and significantly reduces the running times.
  •  
6.
  • Ask, Erik, et al. (författare)
  • Optimal Geometric Fitting Under the Truncated L-2-Norm
  • 2013
  • Ingår i: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). - 1063-6919. ; , s. 1722-1729
  • Konferensbidrag (refereegranskat)abstract
    • This paper is concerned with model fitting in the presence of noise and outliers. Previously it has been shown that the number of outliers can be minimized with polynomial complexity in the number of measurements. This paper improves on these results in two ways. First, it is shown that for a large class of problems, the statistically more desirable truncated L-2-norm can be optimized with the same complexity. Then, with the same methodology, it is shown how to transform multi-model fitting into a purely combinatorial problem-with worst-case complexity that is polynomial in the number of measurements, though exponential in the number of models. We apply our framework to a series of hard registration and stitching problems demonstrating that the approach is not only of theoretical interest. It gives a practical method for simultaneously dealing with measurement noise and large amounts of outliers for fitting problems with low-dimensional models.
  •  
7.
  • Ask, Erik, et al. (författare)
  • Tractable and Reliable Registration of 2D Point Sets
  • 2014
  • Ingår i: Lecture Notes in Computer Science (Computer Vision - ECCV 2014, 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I). - Cham : Springer International Publishing. - 0302-9743 .- 1611-3349. - 9783319105895 - 9783319105901 ; 8689, s. 393-406
  • Konferensbidrag (refereegranskat)abstract
    • This paper introduces two new methods of registering 2D point sets over rigid transformations when the registration error is based on a robust loss function. In contrast to previous work, our methods are guaranteed to compute the optimal transformation, and at the same time, the worst-case running times are bounded by a low-degree polynomial in the number of correspondences. In practical terms, this means that there is no need to resort to ad-hoc procedures such as random sampling or local descent methods that cannot guarantee the quality of their solutions. We have tested the methods in several different settings, in particular, a thorough evaluation on two benchmarks of microscopic images used for histologic analysis of prostate cancer has been performed. Compared to the state-of-the-art, our results show that the methods are both tractable and reliable despite the presence of a significant amount of outliers.
  •  
8.
  •  
9.
  • Borrelli, P., et al. (författare)
  • AI-based detection of lung lesions in F-18 FDG PET-CT from lung cancer patients
  • 2021
  • Ingår i: Ejnmmi Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background[F-18]-fluorodeoxyglucose (FDG) positron emission tomography with computed tomography (PET-CT) is a well-established modality in the work-up of patients with suspected or confirmed diagnosis of lung cancer. Recent research efforts have focused on extracting theragnostic and textural information from manually indicated lung lesions. Both semi-automatic and fully automatic use of artificial intelligence (AI) to localise and classify FDG-avid foci has been demonstrated. To fully harness AI's usefulness, we have developed a method which both automatically detects abnormal lung lesions and calculates the total lesion glycolysis (TLG) on FDG PET-CT.MethodsOne hundred twelve patients (59 females and 53 males) who underwent FDG PET-CT due to suspected or for the management of known lung cancer were studied retrospectively. These patients were divided into a training group (59%; n = 66), a validation group (20.5%; n = 23) and a test group (20.5%; n = 23). A nuclear medicine physician manually segmented abnormal lung lesions with increased FDG-uptake in all PET-CT studies. The AI-based method was trained to segment the lesions based on the manual segmentations. TLG was then calculated from manual and AI-based measurements, respectively and analysed with Bland-Altman plots.ResultsThe AI-tool's performance in detecting lesions had a sensitivity of 90%. One small lesion was missed in two patients, respectively, where both had a larger lesion which was correctly detected. The positive and negative predictive values were 88% and 100%, respectively. The correlation between manual and AI TLG measurements was strong (R-2 = 0.74). Bias was 42 g and 95% limits of agreement ranged from -736 to 819 g. Agreement was particularly high in smaller lesions.ConclusionsThe AI-based method is suitable for the detection of lung lesions and automatic calculation of TLG in small- to medium-sized tumours. In a clinical setting, it will have an added value due to its capability to sort out negative examinations resulting in prioritised and focused care on patients with potentially malignant lesions.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 95
Typ av publikation
tidskriftsartikel (52)
konferensbidrag (40)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (75)
övrigt vetenskapligt/konstnärligt (20)
Författare/redaktör
Enqvist, Olof, 1981 (67)
Ulen, Johannes (38)
Trägårdh, Elin (35)
Edenbrandt, Lars, 19 ... (31)
Enqvist, Olof (28)
Kahl, Fredrik (18)
visa fler...
Edenbrandt, Lars (14)
Sadik, May, 1970 (13)
Kahl, Fredrik, 1972 (12)
Kaboteh, Reza (10)
Kaboteh, R. (10)
Ulen, J. (10)
Edenbrandt, L. (9)
Borrelli, P. (9)
Åström, Karl (8)
Borrelli, Pablo (8)
Hoilund-Carlsen, P. ... (8)
Olsson, Carl (7)
Larsson, Måns, 1989 (7)
Poulsen, Mads (7)
Høilund-Carlsen, Pou ... (7)
Polymeri, Eirini (7)
Kjölhede, Henrik, 19 ... (6)
Alvén, Jennifer, 198 ... (6)
Lindgren Belal, Sara ... (6)
Svärm, Linus (6)
Tragardh, E. (6)
Petersson, Per (5)
Hoilund-Carlsen, Pou ... (5)
Palmér, Tobias (5)
Gerke, Oke (5)
Fredriksson, Johan (5)
Simonsen, Jane Angel (5)
Poulsen, M. H. (5)
Ohlsson, Mattias (4)
Larsson, Viktor (4)
Minarik, David (4)
Johnsson, Åse (Allan ... (4)
Ask, Erik (4)
Nakajima, Kenichi (4)
Fejne, Frida, 1986 (4)
Piri, Reza (4)
Landgren, Matilda (3)
Norlén, Alexander, 1 ... (3)
Oskarsson, Magnus (3)
Gerke, O (3)
Jiang, Fangyuan (3)
Johnsson, Åse (3)
Lind, Erica (3)
Sadik, M. (3)
visa färre...
Lärosäte
Chalmers tekniska högskola (71)
Lunds universitet (56)
Göteborgs universitet (24)
Linköpings universitet (2)
Högskolan i Halmstad (1)
Språk
Engelska (95)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (61)
Naturvetenskap (48)
Teknik (46)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy