SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enroth Stefan 1976 ) "

Sökning: WFRF:(Enroth Stefan 1976 )

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Folkersen, Lasse, et al. (författare)
  • Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease
  • 2017
  • Ingår i: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.
  •  
2.
  • Jackson, Victoria E, et al. (författare)
  • Meta-analysis of exome array data identifies six novel genetic loci for lung function.
  • 2018
  • Ingår i: Wellcome open research. - : F1000 Research Ltd. - 2398-502X. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
  •  
3.
  • Sakornsakolpat, Phuwanat, et al. (författare)
  • Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 494-505
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 x 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
  •  
4.
  • Shrine, Nick, et al. (författare)
  • New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 481-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
  •  
5.
  • Dumanski, Jan P., et al. (författare)
  • Immune cells lacking Y chromosome show dysregulation of autosomal gene expression
  • 2021
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 78:8, s. 4019-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer’s disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a “genetic wasteland”, and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
  •  
6.
  • Enroth, Stefan, 1976-, et al. (författare)
  • Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A large fraction of the adult population is on lifelong medication for cardiovascular disorders, but the metabolic consequences are largely unknown. This study determines the effects of common anti-hypertensive and lipid lowering drugs on circulating plasma protein biomarkers. We studied 425 proteins in plasma together with anthropometric and lifestyle variables, and the genetic profile in a cross-sectional cohort. We found 8406 covariate-protein associations, and a two-stage GWAS identified 17253 SNPs to be associated with 109 proteins. By computationally removing variation due to lifestyle and genetic factors, we could determine that medication, per se, affected the abundance levels of 35.7% of the plasma proteins. Medication either affected a single, a few, or a large number of protein, and were found to have a negative or positive influence on known disease pathways and biomarkers. Anti-hypertensive or lipid lowering drugs affected 33.1% of the proteins. Angiotensin-converting enzyme inhibitors showed the strongest lowering effect by decreasing plasma levels of myostatin. Cell-culture experiments showed that angiotensin-converting enzyme inhibitors reducted myostatin RNA levels. Thus, understanding the effects of lifelong medication on the plasma proteome is important both for sharpening the diagnostic precision of protein biomarkers and in disease management.
  •  
7.
  • Folkersen, Lasse, et al. (författare)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
8.
  • Gyllensten, Ulf B., et al. (författare)
  • Preoperative Fasting and General Anaesthesia Alter the Plasma Proteome
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Blood plasma collected at time of surgery is an excellent source of patient material for investigations into disease aetiology and for the discovery of novel biomarkers. Previous studies on limited sets of proteins and patients have indicated that pre-operative fasting and anaesthesia can affect protein levels, but this has not been investigated on a larger scale. These effects could produce erroneous results in case-control studies if samples are not carefully matched. Methods: The proximity extension assay (PEA) was used to characterize 983 unique proteins in a total of 327 patients diagnosed with ovarian cancer and 50 age-matched healthy women. The samples were collected either at time of initial diagnosis or before surgery under general anaesthesia. Results: 421 of the investigated proteins (42.8%) showed statistically significant differences in plasma abundance levels comparing samples collected at time of diagnosis or just before surgery under anaesthesia. Conclusions: The abundance levels of the plasma proteome in samples collected before incision, i.e., after short-time fasting and under general anaesthesia differs greatly from levels in samples from awake patients. This emphasizes the need for careful matching of the pre-analytical conditions of samples collected from controls to cases at time of surgery in the discovery as well as clinical use of protein biomarkers.
  •  
9.
  • Klaric, Lucija, et al. (författare)
  • Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19.
  • 2021
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory. ; , s. 1-28
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
  •  
10.
  • Yang, Zhijian, et al. (författare)
  • Genetic Landscape of the ACE2 Coronavirus Receptor
  • 2022
  • Ingår i: Circulation. - : Ovid Technologies (Wolters Kluwer Health). - 0009-7322 .- 1524-4539. ; 30:SUPPL 1, s. 36-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood.Methods: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data.Results: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells.Conclusions: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (49)
doktorsavhandling (2)
annan publikation (1)
Typ av innehåll
refereegranskat (46)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Enroth, Stefan, 1976 ... (50)
Gyllensten, Ulf B. (21)
Johansson, Åsa (19)
Gyllensten, Ulf (16)
Lind, Lars (11)
Hayward, Caroline (9)
visa fler...
Olovsson, Matts, 195 ... (8)
Wilson, James F. (8)
Zeggini, Eleftheria (7)
Gustavsson, Inger M. (6)
Raitakari, Olli T (6)
Strachan, David P (6)
Langenberg, Claudia (6)
Ek, Weronica E (6)
Gieger, Christian (6)
Stålberg, Karin (6)
Mahajan, Anubha (6)
Deary, Ian J (6)
Wain, Louise V (6)
Harris, Sarah E (6)
Tobin, Martin D (6)
Wikström, Ingrid, 19 ... (5)
Rudan, Igor (5)
Jarvelin, Marjo-Riit ... (5)
Lindberg, Julia Hedl ... (5)
Zhao, Jing Hua (5)
Gudnason, Vilmundur (5)
Sanner, Karin, 1961- (4)
Imboden, Medea (4)
Hamsten, Anders (4)
Kähönen, Mika (4)
Lehtimäki, Terho (4)
Rask-Andersen, Mathi ... (4)
Karlsson, Torgny (4)
Wallentin, Lars, 194 ... (4)
Schulz, Holger (4)
Folkersen, Lasse (4)
Luan, Jian'an (4)
Gustafsson, Stefan (4)
Siegbahn, Agneta, 19 ... (4)
Ameur, Adam (4)
Huffman, Jennifer E (4)
Harris, Tamara B (4)
Liu, Yongmei (4)
Porteous, David J (4)
Uitterlinden, André ... (4)
Vitart, Veronique (4)
Hall, Ian P (4)
Campbell, Archie (4)
Lyytikäinen, Leo-Pek ... (4)
visa färre...
Lärosäte
Uppsala universitet (51)
Karolinska Institutet (13)
Göteborgs universitet (8)
Lunds universitet (8)
Stockholms universitet (5)
Umeå universitet (4)
visa fler...
Kungliga Tekniska Högskolan (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (40)
Naturvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy